
Astatic analyzer is a program written
to analyze other programs for

flaws. Such analyzers typically check
source code, but there are analyzers for
byte code and binaries, too. Analyzers
for requirements or design are possible,
but most are focused on code and bina-
ries. At a minimum, analyzers report
the location and name of a possible
problem. Some analyzers have far more
capabilities. They may describe the
problem and possible attacks or failure
modes in-depth. They may detail the
data or control flow leading from the
source of values involved to the state-
ment where the failure may have mani-
fested or the value is passed to another
component. They may also suggest mit-
igations.

A vulnerability is any property of sys-
tem requirements, design, implementa-
tion, or operation that could be acciden-
tally triggered or intentionally exploited
and result in a failure. As described in
[1]: “A vulnerability is the result of one
or more weaknesses in requirements,
design, implementation, or operation.”
Because configuration, installation,
operation, and other system compo-
nents determine whether a certain code
construct may lead to failure, I speak of
weaknesses in the code, not vulnerabili-
ties. To reiterate, static analyzers report
weaknesses in software.

What Are Their Strengths
and Limitations?
Every static analyzer has a built-in set of
weaknesses to look for in code. Most
have some means of adding custom
rules. In contrast, testing requires test
cases or input data. Testing also requires
artifacts that are complete enough to be
executable, possibly with supporting dri-
vers, stubs, or simulated components.
Static analysis may be performed on
modules or unfinished code, although the
more complete the code, the more thor-
ough and accurate the analysis can be.

Analyzers are limited by the sophis-
tication of the reasoning in them. For
instance, some static source code ana-

lyzers do not handle function pointers
and few can deal with embedded
assembler code. Even if the models of
the programming language, compiler,
hardware, and other pieces used in exe-
cution are perfect, analyzers have the
same fundamental limitation as any
other logical system. They cannot solve
the halting problem or undecidable
problems. In practice, this need not be

a serious limitation. Important code
“should be so clearly correct that it
confuses neither human nor tools” [2].
Although running tests is straightfor-
ward, this same challenge of analysis
arises in developing tests to exercise a
particular property or module.

New tests must be developed when
new attacks or failure modes are discov-
ered. Static analyzers have some advantage
in this case. The weakness check need only
be added and validated once, then the ana-
lyzer is rerun on all code. Test generators
can give a similar advantage.

Most importantly, static analyzers
have the potential to find rare occur-

rences or hidden back doors. Since they
consider the code independently of any
particular execution, they can enumerate
all possible interactions. The number of
interactions tends to increase exponen-
tially, defying comprehensive static
analysis and test execution alike. Static
analysis can focus on the interaction
without testing’s need to re-establish ini-
tial conditions or artificially constrain
the system to produce the desired inter-
action. Worse, black-box testing cannot
realistically be expected to discover, let’s
say, a backdoor accessible when the user
ID is “JoshuaCaleb” since there are a
nearly infinite number of arbitrary
strings to test.

Testing and static analysis comple-
ment each other. Testing has the advan-
tage of possibly revealing completely
unexpected failures. Embedded systems
can be tested, even when it is utterly
impractical to analyze any software that
may be tucked away in a component.

Static Analysis’ Place in
Software Engineering
Static analysis is no panacea. Complex
and subtle vulnerabilities can always
defeat the reasoning in a static analyzer.
The utter lack of an important require-
ment, such as auditing or encryption,
cannot reasonably be deduced from
only the examination of post-produc-
tion artifacts. Software with no resilien-
cy or self-monitoring is open to errors
in installation or operation, but static
analysis can be one of the last lines of
defense against vulnerabilities.

Static analysis can be understood in
a continuum from sound to heuristic. A
sound analysis is 100 percent correct in
its judgments. If it reports a weakness,
a weakness definitely exists. If it
reports that a certain construct is okay,
then one is assured that a weakness is
not present. In some cases, a sound
analysis may not have enough informa-
tion to render a good/bad judgment.

Statistical correlation is an example
of heuristic analysis. For instance, an
open is usually followed by a close or

Static Analyzers in Software Engineering

Static analyzers can report possible problems in code and help reinforce the good practices of developers. This article contrasts
the strengths of static analyzers with testing and discusses the current state-of-the-art. 

Dr. Paul E. Black
National Institute of Standards and Technology

16 CROSSTALK The Journal of Defense Software Engineering March/April 2009

“Most importantly,
static analyzers have
the potential to find
rare occurrences or
hidden back doors.
Since they consider

the code
independently of 
any particular

execution, they can
enumerate all

possible interactions.”



March/April 2009 www.stsc.hill.af.mil 17

resources are typically locked within a
critical section. Such rules may be
derived automatically through machine
learning of existing code. But heuristic
analysis is susceptible to false alarms
(false positives) or missing actual weak-
nesses (false negatives).

Analysis may be a combination of
sound reasoning and heuristic tech-
niques. Complete analysis of the termi-
nation conditions of every loop or pos-
sible states of all combinations of vari-
ables may be impractical, so most ana-
lyzers use algorithms that are not pure-
ly sound or purely heuristic. In addi-
tion, most analyzers are a system of
analytic engines; examples are data flow,
loop termination, value propagation,
control flow, or property recognition.

Work from the June 2008 Static
Analysis Tool Exposition [3, 4] shows
that current analyzers vary widely. An
analyzer may produce few false alarms
for some weaknesses, but many false
alarms for other weaknesses. Likewise,
the rate of missed weaknesses differs
greatly. Analyzers also only cover a sub-
set of documented weaknesses [5].
Thus, the most comprehensive static
analysis would result from a carefully
used combination of analyzers. Other
factors, such as cost and analyst support,
must go into selecting the most appro-

priate static analyzer(s) for each situa-
tion. The Software Assurance Metrics
and Tool Evaluation (SAMATE)
Reference Dataset [6] has thousands of
sample programs that may help such
evaluation.

Static analyzers should be a key part of
every software development process.u

References
1. “Source Code Security Analysis Tool

Functional Specification Version 1.0.”
National Institute of Standards and
Technology (NIST), Special Publi-
cation 500-268. May 2007 <http://
samate.nist.gov/docs/source_code_
security_analysis_spec_SP500-268.
pdf>.

2. Holzmann, Gerard J. “Conquering
Complexity.” Computer 40 (12): 111-
113, Dec. 2007.

3. NIST. “Static Analysis Tool Expo-
sition.” 7 July 2008.

4. NIST. ACM SIGPLAN. Proc. of the
Static Analysis Workshop. Tucson,
AZ. 12 June 2008 <http://samate.
nist.gov/index.php/SAW>.

5. MITRE. “Common Weakness Enu-
meration.” 25 Nov. 2008 <http://cwe.
mitre.org> 

6. NIST. “NIST SAMATE Reference
Dataset.” Jan. 2006.

About the Author

Paul E. Black, Ph.D.,
has nearly 20 years of
industrial experience in
software for integrated
circuit design and verifi-
cation, assuring software

quality and managing business data pro-
cessing. He now works in the Software
Quality Group, Information Technology
Laboratory of the NIST and edits the
online Dictionary of Algorithms and
Data Structures. He has a doctorate in
computer science from Brigham Young
University and has published on topics
including software testing, configuration
control, networks and queuing analysis,
formal methods, software verification,
quantum computing, and computer
forensics. Black is a member of the
Association for Computing Machinery,
IEEE, and the IEEE Computer Society.

NIST
100 Bureau DR Stop 8970
Gaithersburg, MD 20899-8970
Phone: (301) 975-4794
Fax: (301) 975-6097
E-mail: paul.black@nist.gov

Resilient Software
September/October 2009

Submission Deadline: April 10, 2009

21st Century Defense
November/December 2009

Submission Deadline: June 12, 2009

Modeling and Simulation
January/February 2010

Submission Deadline: August 14, 2009

CALL FOR ARTICLES

Please follow the Author Guidelines for CrossTalk, available on the Internet at <www.stsc.hill.af.mil/crosstalk>.
We accept article submissions on software-related topics at any time, along with Letters to the Editor and BackTalk.

We also provide a link to each monthly theme, giving greater detail on the types of articles
we're looking for at <www.stsc.hill.af.mil/crosstalk/theme.html>.

If your experience or research has produced information that could be useful
to others, CrossTalk can get the word out. We are specifically looking for
articles on software-related topics to supplement upcoming theme issues.
Below is the submittal schedule for three areas of emphasis we are looking for:

Static Analyzers in Software Engineering


