
4 IAnewsletter Vol 9 No 2 Fall 2006 • http://iac.dtic.mil/iatac

SAMATE’s Contribution to
Information Assurance
by Paul E. Black

F E A T U R E S T O R Y

There is far too much software in

today’s information world to check

manually. Even if people had the time

to inspect thousands or millions of lines

of code, nobody could remember all the

constraints, requirements, and impera-

tives to make sure the software is secure.

Automated tools are a must.

These tools can help design and

build the right software in the first

place, for instance, checking protocols,

consistency with rules, and properties.

Preventing flaws at the beginning of the

software life cycle is the best way to get

high quality and highly reliable software.

But what if the system being

designed includes commercial, off-

the-shelf (COTS) packages? How can a

contractor thoroughly audit or check

large packages from subcontractors?

What kinds of flaws does the current

development process leave? Does a new

software process yield better quality

software? To address these questions,

the finished software must be checked.

Again, the quantity of software requires

automated software checking or at worst

manual checking of exceptional instances

found by automated means.

To be sure, testing is a vital part

of assurance, too. If one does not have

access to the source code, which is

often the case with COTS packages or

Web services, testing may be the only

feasible way to gain assurance. Even

when the source code or the binary are

available, testing can be closer to actual

use. Testing can catch configuration

or system problems that are taken for

granted when code is examined. On the

other hand, reviews can find problems

that are unlikely to be found by testing.

For instance, a malicious backdoor that

grants special access for a particular user

name, say “matahari,” cannot feasibly be

found by functional, or black box, testing.

Another advantage of automated

tools is that they can be updated and

rerun relatively quickly when a new type

of flaw is discovered or the security policy

is changed. It is impractical to recheck

everything manually for apparently minor

changes in the system.

The SAMATE Project
Which tools find what flaws? Backing

up, what is the list of all flaws to be

found? Can tools check compliance

with internally developed style or

guidelines? If a tool passes a system with

no outstanding alarms, how secure is

system, really? Is the new version of a

tool “better” than the preceding version?

The National Institute of Standards

and Technology (NIST) Software

Assurance Metrics and Tool Evaluation

(SAMATE) project seeks to help answer

these and other questions. The SAMATE

Web site [1] explains that the project,

begun in late 2004, is largely funded by

the Department of Homeland Security

(DHS) to help identify, enhance and

develop software security assurance (SSA)

tools. NIST is leading in (A) testing soft-

ware evaluation tools, (B) measuring the

effectiveness of tools, and (C) identifying

gaps in tools and methods.

Although much work has been done

in these areas, there is little coordinated,

comprehensive, thorough, and objec-

tive work uniting all these. Instead we

see isolated papers comparing different

tools, surveys of methods and techniques,

endorsements and experience reports,

and best practices Web sites.

The SAMATE project is producing

and catalyzing:

u a common enumeration of software

weaknesses and flaws

u a taxonomy of SSA tools

u a survey of SSA tools and companies

u specifications of SSA tool classes

u detailed test plans and test sets for

SSA tool classes

u metrics and measures for software

and for SSA tools

u white papers pinpointing gaps

in tool functions and proposing

research requirements for new tools

and new tool classes

u proposals for experiments and studies

Workshops
This project’s scope is very broad, and

our particular group in NIST does not

have as much background in security and

software assurance as others. To build

collaborations and reach community

IAnewsletter Vol 9 No 2 Fall 2006 • http://iac.dtic.mil/iatac 5

consensus, SAMATE has held several

public workshops.

The first workshop, in August

2005, examined the state of the art in

security assurance tools, particularly

those that detect security flaws and

vulnerabilities. The workshop was also

the beginning of a standard reference

dataset of programs with known flaws.

Forty-five people attended, including

representatives from the federal govern-

ment, universities, more than a dozen

tool vendors and service providers,

and many research companies. The

proceedings, including presentations

and meetings notes, are published as

NIST Special Publication 500-264. [2]

In October, we sponsored and

hosted an Open Web Application Security

Project (OWASP) conference.

In Long Beach in November 2005,

we produced a workshop co-located

with the Institute of Electrical and

Electronics Engineers (IEEE) Automated

Software Engineering (ASE) conference.

This workshop convened researchers,

developers, and government and indus-

trial users of software security assurance

(SSA) tools to discuss and refine the

taxonomy of flaws and functions, come

to a consensus on which SSA functions

should first have specifications and

standard tests developed, gather source

code analyzer tool developers for “target

practice,” see how reference datasets fare

against various tools, and identify gaps

or requirements for research funding.

Working with others, we brought a

very early version of the software reference

dataset (SRD). Participants ran their tools

against a subset of the SRD to demonstrate

the state of the art in finding flaws and to

provide suggestions for extensions to and

improvements of the SRD. [3]

We held a Static Analysis Summit on

29 June 2006 in Gaithersburg, Maryland. [4]

A Taxonomy of Flaws
To accurately determine how well a tool

checks for flaws, one must begin with

a taxonomy of flaws. A taxonomy is not

merely a list, but an organization into

classes with shared characteristics. For

instance, buffer overflow is a well-known

(and unfortunately still widely occur-

ring) type of flaw. But the classification

“buffer overflow” can be further refined

into heap or stack overflows, underflows

or overflows, etc. In fact, the CLASP

Reference Guide [5] lists eight different

types of overflows. Even finer distinc-

tions may be important to language

designers or tool researchers, but may be

unimportant to the programmer.

Authors have created and published

many taxonomies of flaws. [6] [7] [8] For

instance, MITRE grouped repeated prob-

lems listed in the Common Vulnerability

and Exposures (CVE) [9] into a list of

vulnerability examples. These works

approach the problem from different

views and define flaws differently, but have

limited effort to reconcile the definitions,

classifications, and details. SAMATE work-

shops catalyzed work to come up with one

common enumeration of weaknesses. [10]

Over time the taxonomy is sure to expand

and change, but work can be shared

instead of starting over for each good idea.

A Taxonomy of SSA Tools
Having a taxonomy of weaknesses, can

we start testing tools? In a project of such

ambitious scope, effort must be priori-

tized: we must choose which kinds of tools

to look at first and which must be left for

the future. Then, how do we choose which

classes to work on? We must be able to list

all classes of SSA tools so we can rationally

(or at least, coherently) decide which ones

not to work on. It follows we must also

have a taxonomy of software assurance

tools. The proposed taxonomy is orga-

nized around four facets:

u life cycle phase

u automation level

u approach

u viewpoint

The life cycle phase corresponds to the

type of artifacts used, e.g. specifications,

source code, executable, etc. It is docu-

mented as a simple waterfall model, even

though more elaborate models are often

better for the software process.

The automation level is a simple clas-

sification of how much human expertise,

6 IAnewsletter Vol 9 No 2 Fall 2006 • http://iac.dtic.mil/iatac

effort, or knowledge is required. Level 0

is manual procedures, like code review.

Sometimes there is no replacement for

human involvement. The next levels have

varying degrees of automation:

1. analysis aid

2. semi-automated

3. automated

Level 1 is analysis aids that help human

analysts, but have no particular software

assurance function themselves. Some

examples are call-graph extractors,

configuration control systems, or random

test generators. Semi-automated tools or

techniques at level 2 are targeted toward

assurance, but need varying degrees of

human judgment for extreme cases or

to make a final decision. Most code and

Web scanners fall in this category. They

may point out things that are certainly

flaws, but in other cases can issue only

warnings about potential flaws. A human

must then check and make the final

determination. Finally, a firewall is an

example of a completely automated tool

at level 3. It takes action on whether to

pass, trash, or cache packets without

human intervention. Manual setup or

auditing of automated tools does not

make them semi-automated.

A tool may take four different

approaches to software assurance:

preclude the flaw from possibly occur-

ring, detect a flaw or its exploit and

report it, mitigate flaws to reduce or

eliminate damage, and react to a flaw or

its exploit. Choosing another language

instead of C precludes most buffer over-

flows. Source code and Web scanners

take the approach of detecting flaws. A

multi-level security system can mitigate

many security flaws. Finally, an intru-

sion-detection system reacts to exploited

flaws by denying access.

The final facet, viewpoint, is

either internal or external. An external

viewpoint corresponds to functional or

“black box” testing or Web penetration

testing. Code reviews and intrusion

detectors are prime examples of tools

that work from an internal viewpoint.

Testing an SSA Tool Class
With a coherent taxonomy of software

security assurance tools, we can ratio-

nally decide which classes of tools are

most important, which to do first, and

which to leave for later.

When we have chosen a particular

class of tools to work on, we begin by

writing a specification. The specifica-

tion typically consists of an informal list

of features, for quick orientation, then

more formally worded requirements for

features, both mandatory and optional.

Specifications often include a glossary

and a section with technical background,

which gives a tutorial introduction.

For each tool class, we also recruit a

focus group to review and advise on speci-

fications. Group members are developers,

academic researchers, and users. We

depend on their expertise to make sure the

specifications are widely acceptable.

While we are developing a specifi-

cation, we also work on a test plan and

test sets. What do current commercial

and research tools of this class do?

How will we test this kind of tool? This

practical work helps us understand the

specification. Once the focus groups

review the specification and we incor-

porate public comment, we develop a

test plan. A test plan details how a tool

or technique is tested, how to interpret

test results, and how to summarize or

report tests. Most test plans require a

test suite, which is a set of test cases.

For example, code analyzers require

a test suite of dozens or hundreds of

large and small examples of source code

with known flaws. The test suite also

includes examples that are free of flaws

to test for false alarms. Web penetration

testers need executable applications

with known flaws, like WebGoat. [11]

Currently we are developing a

specification and test plan for source

code analyzers. The first draft should be

available at the Static Analysis Summit.

[4] We are also developing a specification

for Web application scanners.

A Standard Reference Dataset
While developing suites of tests,

we collect much larger numbers of

candidate test cases. This collection,

the SAMATE Reference Dataset (SRD)

[12], is freely accessible online. So far,

we have collected more than 1,400 test

cases, which academic researchers, tool

developers, and tool evaluators can

freely access to develop new methods

and compare results. New test cases are

constantly being added. The SRD allows

anyone to search the test cases on a

number of criterion, select any combi-

nation, and download them. Upon

approval, researchers will be given

accounts to contribute to the SRD. The

SRD is a repository and clearing house

for samples of designs, code, bina-

ries, and other artifacts to accelerate

research and development.

A single test case can have explana-

tory information associated with it, for

instance, the author or contributor, the

date submitted, language, which flaw(s)

it exhibits, and a description. In addi-

tion, test cases may have directions on

how to compile and link source code,

input that triggers the flaw, or expected

output. Users also will be able to add

comments on a test case.

For historical stability, the content

of test cases will never be updated. If the

code in a test case needs to be fixed or

improved, a new test case will be added,

and the status of the existing test case will

be changed to “deprecated.” Deprecated

status advises against using the case for

any new work. A reference to the new

test case will be added to the deprecated

case. This way, a test report referring to

a certain test suite can be rerun exactly,

even years later. Although the metadata

may be changed or comments added, the

original test case won’t be changed.

Future Challenges
Ultimately, these tests for classes of

tools and techniques exist to help

answer real questions. Is a program

secure (enough)? How secure does tech-

nique X make a program? How much

more secure does technique X make a

IAnewsletter Vol 9 No 2 Fall 2006 • http://iac.dtic.mil/iatac 7

program after doing Y and Z? How much

assurance does tool T give? Dollar for

dollar, can I get more reliability from

methodology P or methodology S?

We will work with others on

developing and validating metrics and

measures, not only for software and

designs, but also for the tools themselves.

Possible measurable qualities for tools

and techniques are effectiveness (do

they fi nd important fl aws), complete-

ness (how many kinds of fl aws can they

fi nd? Do they catch all of those kinds?),

soundness (ratio of false alarms to real

weaknesses found), report precision

(location, severity, and type of fl aw), and

scalability and maximum size of artifact

that can be handled. We would also like

to characterize the ability of the user to

trade completeness for soundness, add

their own rules and style policies, and set

a severity cut-off points.

Throughout our investigation, we will

fi nd gaps and opportunities in tools and

techniques. We will write papers detailing

these gaps and research opportunities.

We will also propose requirements for

research funding to develop new tools,

do studies or experiments, or explore

methods for assuring information. With

more than a century of experience in

measurement science and standards,

NIST is uniquely qualifi ed to conduct or

collaborate in studies and experiments

to improve the foundation of computer

science and software assurance. ■

References
1. “SAMATE,” http://samate.nist.gov/ accessed

29 March 2006.

2. Proceedings of Defining the State of the Art in

Software Security Tools Workshop, Paul E. Black

(chair) and Elizabeth Fong (ed), NIST Special

Publication 500-264, November 2005. Available at

http://hissa.nist.gov/~black/Papers/nistSP500-

264_aug05.html

3. Proceedings of Workshop on Software Security

Assurance Tools, Techniques, and Metrics, Paul

E. Black (chair), Michael Kass (co-chair), and

Elizabeth Fong (ed), NIST Special Publication 500-

265, February 2006. Available at http://hissa.nist.

gov/~black/Papers/nistSP500-265_nov05.html

4. “Static Analysis Summit,” http://samate.nist.gov/

SAS accessed 29 March 2006.

5. John Viega, CLASP Reference Guide: Volume 1.1

Training Manual, Secure Software, McLean, VA, 2005.

6. Huaiqing Wang and Chen Wang, Taxonomy of

Security Considerations and Software Quality,

Communications of the ACM, 46(6):75-78, June 2003.

7. Katrina Tsipenyuk, Brian Chess, and Gary McGraw,

“Seven Pernicious Kingdoms: A Taxonomy of

Software Security Errors,” Proceedings of Workshop

on Software Security Assurance Tools, Techniques,

and Metrics, op. cit., pp 36-43.

8. Michael Howard, David LeBlanc, and John Viega,

19 Deadly Sins of Software Security. McGraw-Hill

Osborne Media, July 2005.

9. “Common Weakness Enumeration,” http://cve.

mitre.org/cwe/ accessed 31 March 2006.

10. “WebGoat Project,” http://www.owasp.org/soft-

ware/webgoat.html accessed 29 March 2006.

11. “SAMATE Reference Dataset,” http://samate.nist.

gov/SRD/ accessed 29 March 2006.

About the Author

Dr. Paul E. Black | is a computer scientist at
National Institute of Standards and Technology
(NIST). Before joining NIST, he had nearly 20 years
of industrial experience in software for integrated
circuit design and verifi cation, quality assurance,
and business data processing. He earned a PhD
from Brigham Young University in 1998. He has
published in software testing, formal methods, soft-
ware verifi cation, and quantum computing, and has
taught at Johns Hopkins University. He is a member
of Association of Computing Machinery (ACM), the
Institute of Electrical & Electronics Engineers (IEEE),
and IEEE Computer Society.

For more information, please visit: www.ISO27001conference.com

u Learn more about ISO/IEC 27001:2005, the international information security
management standard and learn how organizations are using it

u Learn how ISO/IEC 27001:2005 can work in harmonization with and provide a
holistic approach to meeting the requirements of FISMA, CobIT, ITIL, ISF, and others

u Attend “How To” sessions in such critical areas as Asset Identification Valuation,
Controls Identification and Risk Treatments

u Learn practical implementations of the ISO/IEC 27001 standard in harmonization with
other International Standards and Federal requirements

A “Standards” Way of Securing Information

HOSTED BY

27th & 28th September 2006 • Hilton McLean Tysons Corner

Conference Tracks
Track One .. Service and Support Processes
Track Two ..Risk Management
Track Three ... Security Management

