
SOFTWARE ASSURANCE WITH SAMATE REFERENCE DATASET, TOOL
STANDARDS, AND STUDIES

Paul E. Black, National Institute of Standards and Technology (NIST), Gaithersburg, MD

Abstract
Today's avionics systems depend more and

more on software from many sources: vendors,
subcontractors, in-house, and open source. System
interactions are exposed to external agents in
contexts from air-to-ground links to OS patches
downloaded via the Internet. This is a huge amount
of software with the risk of attack from distant
global sites. Yet users need assurance that the
software will work and not create security
problems.

We focus on NIST's Software Assurance
Metrics And Tool Evaluation (SAMATE) project
and its contribution. SAMATE is developing
specifications, metrics, and automated test suites for
software assurance tools. For instance, source code
security analyzers can help developers produce
software with fewer security flaws. They can also
help identify malicious code and poor coding
practices that lead to vulnerabilities. The project's
publicly available reference dataset, the SRD,
contains more than 1800 flawed (and fixed!)
program examples to help evaluate software
assurance tools and algorithms. These metrics and
reference datasets help purchasers confirm tool
vendors' claims. We also study the assurance
impact of tool use, methods, and techniques.

How Can One Get Good Software?
The qualities needed in today’s software and

systems cannot be “tested in”. Desirable properties,
such as security, safety, and reliability, must be
designed in and built in from the beginning. The
development process must be such that users can
rely upon the resulting systems or software.

Is the user then left to depend on blind faith in
artifacts produced? Clearly, no. Even with the most
disciplined and well-characterized processes,
artifacts must be examined to gain assurance that
the output of the process is close to the target
qualities. This is the essence of quality control.

Concepts from quality control apply to
software, although for different reasons. Software is
not subject to manufacturing variations in the same
sense as bullets or pencils. However today’s
software and systems are far too complex to test
absolutely every possibility or to formally verify
everything. Discipline in the development process
must compensate for post-production limits to
testing and verification. Such limits are not unique
to computers. Post-production assurance of hand
grenade quality is also limited to testing only a
sample of the production.

Role of Post-Production Analysis
Software must be tested, reviewed, verified,

and otherwise analyzed after production to assure
that desired levels of quality, safety, security, etc.
are met, that no changes in the process or the
environment have lowered the quality of the output.
If we find assurance of required properties, the
artifacts may be released. However if the post-
production analysis does not provide the assurance
we need, some remediation may be feasible. In
some cases, it may be cheaper and faster to reject
the product, look for and address root causes, and
begin again.

Such analysis builds a strong assurance case
quickly when the development process is well
known and well characterized. But what can be
done if the software is commercially acquired?
Even a contractor needs to be qualified. What if
there is a new software process to qualify? How can
we gain assurance that legacy systems do and will
perform acceptably in today’s complex systems and
in the environment of electronic aggression from
distant corners of the globe? In all these cases, and
many more, we must rely largely on examination of
the primary artifacts: the source code or binaries
supplied. Examination may be some combination of
testing, static analysis, review, and formal
reasoning. Each of these approaches have different
techniques which range from completely manual
through machine assisted to highly or completely
automated. For these reasons, NIST’s Software

Assurance Metrics and Tool Evaluation (SAMATE)
project began by characterizing analysis, especially
tools, applicable after production [1].

Assurance in Hostile vs. Benign
Environments

Traditional software development is implicitly
for a benign environment. The biggest threat is
accidentally triggering a latent error. The
assumption is that Nature does not try to cause
system failures. Although collective wisdom in
such forms as Murphy’s Law cautions us against
complacency, the world today is much worse. The
wide spread decay of morals and social values of
honesty, vigilance, and restraint allow serious
behavior to flourish and the Internet amplifies its
global effect. No longer is the threat merely
adolescents working for bragging rights or seeking
a challenge. Threats come from extortionists,
organized crime, educated and highly motivated
criminals, and aggressive opponents trying to
disrupt or even take control of services and
capabilities. Rather than planning for random
failure, we must assume that a single weak link can
allow an entire system to be compromised.

SAMATE Project Background
The NIST SAMATE project began in 2005

sponsored in part by the Department of Homeland
Security. The goal was to develop methods,
measures, and metrics to evaluate tools and
techniques to determine how much they contribute
to assurance. For instance, how much does the use
of static source code analyzers help? How much
assurance can we get from using test-driven
development? More subtle questions ask whether
the use of two techniques is additive or duplicative.
For example, if a web interface is developed with
the cleanroom approach, does running a web
application scanner help enough to justify its use?

We in the SAMATE project identify tools,
recruit focus groups experienced in the
development and use of tools, develop testable
behavioral specifications and test plans, and collect
and write test material. The test material is publicly
available, so all may benefit. By “tools” we mean a
bundle of functionalities with a coherent purpose or
approach. A single computer program may combine

several conceptual tools for ease of use, speed,
resource and result sharing, etc.

The project also organizes workshops and
conference sessions to bring together researchers
and users to foster collaboration, catalyze projects,
and enhance communication.

As previously noted, SAMATE began with
two tools or tool classes: source code security
analysis tools and web application scanning tools.
Both are automated analysis tools which can be
used after production. We begin with the latter.

Web Application Scanners
A web application is a program whose input

and output is largely or primarily on the Internet,
particularly the World Wide Web. Because of
worldwide access, relative complexity, and rapid
evolution, web applications are a spawning ground
for vulnerabilities. A web application scanning tool,
or web app scanner for short, heuristically tries
dozens of different exploits and attacks on a web
site and reports possible breaches it finds.

One challenge for web app scanners is that
vulnerabilities are often not immediately apparent.
The web app scanner must probe the web site
looking for hints of vulnerabilities, slight
weaknesses, or trivial malfunctions. When
combined, these may yield an exploitable
vulnerability. Yet, there are dozens of ways to
probe a web site. How can one test a web app
scanner that should use many, but definitely not all,
of these ways to thoroughly probe a web site?

Another testing challenge is environmental
complexity. SQL injection is a vulnerability in
which the user can get SQL commands or command
fragments through the web application front end
into a database application. This allows the user to
change or compromise data. To spur the web app
scanner to exercise its SQL capabilities, the test
environment must have most of the functionality of
a database command handler and database tables.
Another vulnerability, called cross-site scripting,
occurs when a user can leave data on a web site,
like a “comment”, that compromises later web
browsers attempting to render the “comment”. So
the test environment must supply much browser
functionality, too.

A simple test approach of watching for
particular probes quickly reaches a limit. No
scanner needs to send all conceivable probes or
even classes of probes. Yet, trying just one probe is
clearly inadequate. A more severe limitation is that
without feedback from the “web site” (test harness)
that, say, a database is used, the scanner will not
even try advanced probes to seek an SQL injection
vulnerability.

A reasonable test approach is to simply build
web applications with known vulnerabilities.
Existing web servers, database products, and
browser can be used to provide the infrastructure
that web app scanners expect. Testers can examine
the web app scanner report to determine if it finds
and reports vulnerabilities. The OWASP WebGoat
[2] is such an application, but with the purpose of
teaching what to avoid.

One problem with this approach is the possible
misuse of vulnerable applications. There is a chance
that somebody bases production work on the test
application. It may be tempting to start with the
code and “fix” the weaknesses. Unfortunately it is
hard enough to make an application secure when
that is the goal from the outset. Starting with code
having deliberately planted vulnerabilities cannot
help assurance. Worse yet, some vulnerabilities
allow applications or the machine on which they are
running to be corrupted or crashed. Web app
scanners try to avoid crashing the site being
examined. But if a machine running a test
application were exposed to the web at large, it
could be compromised or corrupted.

Protocol for Researching Risky Software
Clearly one must be careful when developing

or using risky software, e.g. for testing. Risky
software ranges from code with simple, known bugs
to sophisticated worms and viruses with built-in
polymorphic encoding and mutation engines to
avoid detection. Such software may be root kits,
which infect operating systems, or processes that
contain many ways of invading and propagating to
other hosts. It may be as innocuous as a bug that
crashes the web server or database.

Working with risky agents is not unique to the
computer community. Medical laboratories have
four categories or levels of infectious agents

defined [3], which parallel those in recombinant
DNA research. The levels depend on the organism’s
potential to infect humans, the severity, and
transmission vectors. For instance, “agents with a
potential for respiratory transmission, and which
may cause serious and potentially lethal infection”
should be handled only at Biosafety Level 3 or
above. Practices, safety equipment, and facilities
are defined for each level. Also microorganisms
may be engineered to be auxotrophs, that is, they
cannot reproduce without some specific substance
which does not occur in nature.

Computer hazards are not confined to
vulnerable web applications developed to test. Anti-
virus and anti-spyware companies work with code
that might cause problems if it escapes. Protection
agencies examine software that has deleterious
effects on computer systems. Some colleges and
universities assign students to write or work with
viruses or malware to learn how to protect against
it. At a minimum, software security trainees need
practice with environments that have known
vulnerabilities. Research labs for cell phone viruses,
which have been demonstrated, or automobile
Bluetooth links should be well isolated.

Computer science researchers working with
risky software have a laudable record. Apparently
adequate precautions are being taken. But new
people are beginning such work. It would be helpful
for them to have clear guidelines on what
safeguards are prudent for what kinds of research
with different kinds of risky software.

A web application, built for testing, with
carefully introduced vulnerabilities might crash a
server. Making the web application the computer
analogy to an auxotroph may be sufficient. For
instance, the application would refuse to run unless
some file, like enableRiskyWebApp, is present
or the system date is set to a specific year, like
2059. Other isolation possibilities are running on
computers with no data connection to the outside (a
so-called “air gap”) or having network cards and
USB storage device drivers removed.

We are planning to organize workshops to
define levels or classes of risky software and
develop protocols and recommendations for
researching them.

Source Code Security Analysis Tools
The second class of tool functionality the

SAMATE project is working on is source code
security analysis tools.

“Source code security analysis tools scan a
textual (human readable) version of source
files that comprise a portion or all of an
application program. These files may
contain inadvertent or deliberate
weaknesses that could lead to security
vulnerability in the executable version of
the application program.” [4]
The work so far has produced a number or

results. We released version 1.0 of a testable
specification for such analyzers, have a draft test
plan, and have written or collected several hundred
programs and program snippets as test cases. In
developing a specification for this tool class, we
needed to address the different weaknesses that are,
could, or should be caught. How could we have
confidence that the assessment was thorough
without a list of all (or all known) weaknesses?

In our August 2005 workshop, we brought up
the need for a comprehensive, common list of
software weaknesses and proposed a solution [5].
Since we had brought together many who had
worked on taxonomies, this catalyzed the Common
Weakness Enumeration (CWE) [6].

The specification for source code security
analyzers consists of six mandatory features and
three optional features, along with Annex A, a list
of 21 weaknesses, and Annex B, a list of code
complexities. Code complexities do not strictly
affect the weakness, but do complicate analysis.
Some complexities are loops, global or local
variables, interprocedural calls, and indirection.
Briefly, the requirements for mandatory features are

• Identify all weaknesses in Annex A.
• Report any weaknesses identified.
• Use a meaningful name for weaknesses.
• Give their directory, file, and line.
• Handle code complexities in Annex B.
• Have a low false positive rate.
We don’t consider features dealing with ease

of installation or use, integration with other tools,
cost, or other important facets. Most of the

requirements are straightforward, but why require a
low false positive rate? Different uses have different
acceptable rates. For a low criticality application
just beginning to use a source code security
analyzer, more than about 20 % false alarms may
lead to rejection of the tool. On the other hand
developers of a security-critical application may
tolerate lots of false positive to minimize the chance
of missing a real vulnerability. Since the
requirement lacks a testable measure, why not
remove it? NIST procedure is to only comment on
requirements. Since the false positive rate is very
important, we left the requirement. We plan studies
and experiments to come up with a specific rate or
rate classes for a future version.

The requirements for optional features are:

• Produce an XML-formatted report.
• Not report a suppressed weakness.
• Use the CWE name for weaknesses.
These are forward looking requirements. The

XML formatting is for tool interoperability. Since
there is no widely used standard, we don’t specify
the format to use. For greatest productivity, users
need to be able to suppress the report of known
weaknesses. They may be tolerated for many
reasons: it is not really a weakness, something else
in the system makes exploit of the weakness
impossible, resources might better be used to fix
other vulnerabilities, the risk is very low, etc.

When the CWE has matured, the requirement
to use CWE names will replace the requirement to
use meaningful names.

There are 175 test cases in C alone for the
current draft test plan. C++ has about the same
number, while Java has far fewer, since many
common weaknesses cannot occur in Java at all. In
addition to these test cases, we have an order of
magnitude more examples that others and we have
gathered or written for various investigations. For
maximum flexibility and community benefit, we
implemented a publicly accessible, on-line
reference dataset to hold all these and more.

SAMATE Reference Dataset (SRD)
The SAMATE Reference Dataset, or SRD, is a

web-accessible database to search and share
examples of code. There are currently more than

1800 entries of code in C, C++, Java, and PHP.
Most of the entries have specific known
weaknesses, although many have associated code
with the weakness fixed. This corresponding
“good” code is used to determine false positive
rates. Each example has fields for meta-
information, like author, submission date, a prose
description, inputs to exploit the vulnerability,
expected output, and compiler flags. The SRD also
has test suites, which are defined sets of test cases.

The vast majority of the entries are small
programs specifically written to illustrate some
weakness. Some entries came from popular Internet
applications, such as bind, sendmail, and wu-ftp,
with known vulnerabilities [7]. Many other users,
researchers, companies, and developers generously
donated large and small sets of examples collected
for various reasons.

The SRD is not limited to source code. The
SRD can handle binaries and bytecode programs,
which will be added to examine binary analyzers.
We will also add examples in other languages, such
as SPARK, Ada, and C#.

We planned the SRD to be a public resource.
Users can search the test cases by language,
description, author, weakness, status, strings in the
source code, and many combinations. Registered
users can comment on any test case, adding results
of using certain tools or algorithms, observations on
the legitimacy or limitations of the example,
suggestions referring to related entries, etc.
Approved people can add their own test cases or
test suites to the SRD. Our goal is for the SRD to
increasingly be a forum to exchange test material.

To serve as a foundation for research, the
source code (or binaries, in the future) never
change. Meta-information may be corrected, but the
entries themselves are not fixed or modified. Thus
when a researcher cites a certain suite of test cases,
later developers can retrieve exactly the same test
cases to see the improvement with a new algorithm.
If an entry is determined to be bad, it can be marked
as deprecated, and a replacement entry added.
Deprecated entries should not be used for new
work, and are not usually returned for searches, but
they are still in the SRD.

Please contribute test cases your organization
or you have developed to the SRD. Research and

development of better tools and techniques could be
sped up with a rich source of realistic examples.
Although many people use the SRD, we are looking
for comments and suggestions to improve it.

Determining the Tool Efficacy
All this work leads to one primary question:

how much do tools or techniques really help? In
addition to developing standards and test materials,
we have studies in progress. Dawson Engler asked,
“Do software assurance tools really help improve
security?” [8]. Certainly tools find weaknesses that
can be, and are, fixed. But do tools find weaknesses
that would be exploited if not fixed? Does fixing
reported weaknesses introduce other, more subtle
vulnerabilities? Perhaps the time teams spend
checking what turns out to be false positives or
fixing unimportant flaws could better be used in
code reviews or design analysis. Rescorla studied
whether searching for vulnerabilities increases
security, but did not find clear evidence to support it
[9]. Our preliminary studies of the effect of static
analysis tools on software assurance have been
similarly inconclusive [10].

As we said in the beginning, quality, security,
safety, and other important properties must be
designed in and built in from the beginning. We do
not yet know how much tools and techniques
contribute to assurance. There are many
confounding factors to resolve, such as increased
program use, misattributing vulnerabilities in other
programs, program size, seasonal effects (“back to
school”), and developer experience, to name a few.
However we know that tools can give feedback on
the development process and help developers learn
what to avoid.

For further studies, we need your software
development data: number of flaws found, type of
weakness, number fixed, how found, etc. At NIST
we are quite willing to operate under strict non-
disclosure agreements. We have a reputation for
handling the most sensitive of information.

References
[1] The Software Assurance Metrics And Tool
Evaluation (SAMATE) project, National Institute of
Standards and Technology, http://samate.nist.gov/

[2] OWASP WebGoat Project,
http://www.owasp.org/index.php/Category:OWASP
_WebGoat_Project

[3] Biosafety in Microbiological and Biomedical
Laboratories (BMBL), 1999, U.S. Department of
Health and Human Services Centers for Disease
Control and Prevention and National Institutes of
Health, Fourth Edition.
http://www.cdc.gov/OD/ohs/biosfty/bmbl4/bmbl4to
c.htm

[4] Black, Paul E., Michael Kass, and Michael Koo,
2007, Source Code Security Analysis Tool
Functional Specification Version 1.0, National
Institute of Standards and Technology, Special
Publication 500-268, page 4.
http://samate.nist.gov/index.php/Source_Code_Sec
urity_Analysis

[5] Proceedings of Defining the State of the Art in
Software Security Tools Workshop, Elizabeth Fong
ed., National Institute of Standards and Technology,
Special Publication 500-264, September 2005, pp.
79-82.
http://samate.nist.gov/docs/NIST_Special_Publicati
on_500-264.pdf

[6] Common Weakness Enumeration, MITRE,
http://cwe.mitre.org/

[7] Zitser, Misha, Richard Lippmann, and Tim
Leek, 2004, Testing Static Analysis Tools using
Exploitable Buffer Overflows from Open Source
Code, proc. 12th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering (FSE-12), Newport Beach, CA, USA,
ACM SIGSOFT, pp. 97-106.

http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Z
itser.pdf

[8] Chou, Andy, Ben Chelf, Seth Hallem, Charles
Henri-Gros, Bryan Fulton, Ted Unangst, Chris Zak,
and Dawson Engler, 2005, Weird things that
surprise academics trying to commercialize a static
checking tool, invited talk at SPIN05
http://www.stanford.edu/~engler/spin05-
coverity.pdf

[9] Rescorla, Eric, 2005, Is finding security holes a
good idea?, Security & Privacy Magazine, IEEE,
3(1), pp. 14-19. http://www.rtfm.com/bugrate.pdf

[10] Okun, Vadim, William F. Guthrie, Romain
Gaucher, and Paul E. Black, 2007, Effect of Static
Analysis Tools on Software Security: Preliminary
Investigation, Third Workshop on Quality of
Protection (QoP'07), Alexandria, VA, to appear.

Disclaimer
Certain trade names and company products are

mentioned in the text or identified. In no case does
such identification imply recommendation or
endorsement by the National Institute of Standards
and Technology (NIST), nor does it imply that the
products are necessarily the best available for the
purpose.

Email Address
paul.black@nist.gov

26th Digital Avionics Systems Conference

October 21, 2007

