
Software Assurance During Maintenance

Paul E. Black
U.S. National Institute of Standards and Technology (NIST)

paul.black@nist.gov

Abstract

Software development, testing, and maintenance tools
must yield assurance information in a standardized form.
Developers can use this information to argue that the soft-
ware is adequate for its use and secure enough for the risk.

NIST’s Software Assurance Metrics And Tool Evalua-
tion (SAMATE) project is developing specifications for soft-
ware assurance tools. These specifications can include op-
tional features for assurance information reports, encour-
aging tools to provide them. During maintenance, develop-
ers can collect this information to make explicit assurance
cases.

1. Introduction

The old days of software engineering for a benign en-
vironment are gone. Today most applications are exposed
to the Internet. Even internal, scientific, or control appli-
cations may have far-reaching effects: consider Ariane 5.
Merely running regression tests after a software change is
becoming less and less adequate.

In the traditional model the assurance case was implicit:
if it passes code reviews and regression tests, it is good
enough for use. Today the software engineer must consider
what arguments make a convincing case that the software to
be released is sufficiently dependable. The engineer must
assemble evidence from many different sources.

2. The SAMATE Project

The U.S. National Institute of Standards and Technology
(NIST) began the Software Assurance Metrics And Tool
Evaluation (SAMATE) project in June 2004. Funded in part
by the U.S. Department of Homeland Security, the project
examines software development and testing methods to im-
prove software assurance throughout the software develop-
ment life cycle. We are surveying software assurance tools
and techniques to identify deficiencies and lead the devel-
opment of a research plan to address them. In the future

we will lead a set of studies and experiments to measure the
effectiveness of tools and techniques, that is, their ability
to produce secure software. We do not want to duplicate
existing datasets, surveys, or work. Many are working to
assess tools, for example, [7] and [1]. Rather, we want to
contribute to existing work, refer to these resources, and
complement them.

Why is NIST interested? NIST is a non-regulatory
agency and has over a century of experience in standards
and measurement. It serves as a neutral party and as a long-
term repository for standard reference materials, datasets,
and other items. Also, NIST already has accreditation ac-
tivities, such as the National Voluntary Laboratory Accredi-
tation Program (NVLAP) and the National Information As-
surance Partnership (NIAP).

As a first step, we are developing specifications for
classes of software assurance tools, such as source code an-
alyzers and web application scanners. The specifications
are precise enough for us to also develop test plans and other
test material, including a reference dataset of good code and
code with known vulnerabilities.

In addition to the specific test material, thousands of re-
search and example cases are publicly available in the SA-
MATE Reference Dataset (SRD) [3]. There are tiny test
cases for specific weaknesses, large cases from actual code,
synthetic code from research projects, and code donated by
vendors. The SRD is growing and will eventually cover
all classes of software security vulnerabilities with versions
for different languages and different platforms or environ-
ments, where applicable. The SRD will have examples for
all phases of the software development life cycle from use
cases to requirements to executables. We welcome and
actively seek contributions from vendors, researchers, and
users.

These specifications and tests can help assure users that
the tools are effective. We include requirements for optional
features to guide vendors to improve their products. One
optional feature would be assurance evidence.



3. Explicit Evidence From Tools

All tools used in the software life cycle, from compilers
to IDEs, from linkers to test generators, should yield explicit
assurance information. Test coverage metrics or digital cer-
tificates from source code analyzers are basic examples.

To be most useful, this information should be in an easy-
to-process format, such as XML, and follow industry-wide
conventions. Although there is no widely-accepted format
for security assurance evidence, such as vulnerabilities and
their severity, there are several efforts in such a direction.

Djenana Campara and James D. Baker are co-chairs of
the Software Assurance Special Interest Group (SwA SIG)
formed in February 2006. The goal is to “to establish a
common framework for analysis and exchange of infor-
mation related to software trustworthiness.” [4] With the
framework, design claims and arguments, assurance evi-
dence produced by tools, and security requirements from
existing standards could be combined and analyzed.

Jeff Williams maintains that software should have a “se-
curity facts” label [6], in the spirit of food labels or material
safety data sheets. Daniel J. Quinlan proposed that ana-
lyzer certificates or evidence could be attached to the exe-
cutable [2], as in proof-carrying code, see for instance [5].

With a widely-accepted convention for assurance evi-
dence, the SAMATE project can include requirements for
optional features in their specifications for software assur-
ance tools. With clear specifications and adequate tests, re-
searchers and vendors would have the incentive to include
such assurance information reports in their tools. During
maintenance this information could be accumulated.

4. Making the Assurance Case

Not surprisingly, a software assurance case potentially
gets evidence from many different sources, such as

• formal correctness proofs of algorithms or protocols,

• code reviews,

• compiler safety enforcement, e.g., add bounds checks,

• code scanners to look for security vulnerabilities,

• testing with different coverage and criteria, and

• live testing with “alpha” or “beta” users.

A grossly simplified assurance case might be: if test suite
branch coverage exceeds 90% for all modules and no errors
are exposed by the test suite, the software is acceptable. De-
pending on the risk, a software assurance case may be sim-
ple and informal or more complex and quite formal.

When software is first conceived and written, creating
an extensive assurance case, with assumptions, arguments,

evidence and other elements given explicitly, may be an ac-
ceptable part of developing test plans and acceptance cri-
teria. However, nobody can afford complete manual re-
analysis after every incremental change. An explicit assur-
ance case, aided by appropriate tools, can be quickly re-
viewed during maintenance. On the other hand, with new
attacks being invented every day, simply reusing the initial
assurance case over and over is unacceptable. Maintainers
must be prepared to reconsider the assurance case.

Small changes are likely to have small effects on the as-
surance case, which can be adapted quickly. Perhaps just a
few more test cases are needed. Maybe rerunning a source
code analyzer, updated with the latest weakness signatures,
suffices. However, reviewing the assurance case may show
that a large change requires a whole new class of assurance
activity. For instance, adding a web interface to an applica-
tion may require penetration testing before release.

5. Summary

Never before has so much of the world depended on
vastly spread software-run systems. Never before has there
been such a risk of computer malfeasance, from spyware
to identity theft to electronic warfare. Never before has the
decay of morals and the lowering of societal norms com-
bined with global communication to allow the few to harm
the many in so many ways. Our professional ethics demand
that we support and encourage secure software.

Tools already used in software development and main-
tenance can automatically supply information for assurance
cases. This information can be gathered to make a case that
software is effective and secure enough for its intended use.

References

[1] F. Abbott and J. Saur. Comparison of code checker technolo-
gies for software vulnerability evaluation. Technical report,
Joint Systems Integration Command, April 2005.

[2] D. J. Quinlan. Lawrence Livermore National Laboratory. per-
sonal communication, Mar. 2006.

[3] SAMATE reference dataset. Available from http://samate.
nist.gov/SRD (accessed June 2006).

[4] Software Assurance SIG. Highlights of technical meeting,
Tampa, FL. Available from http://swa.omg.org/swa info.htm
(accessed June 2006), Feb. 2006.

[5] M. Wildmoser. Verified Proof Carrying Code. PhD thesis, In-
stitut für Informatik, Technische Universität München, 2005.

[6] J. Williams. Unsafe at any (CPU) speed: Why we make the
same security mistakes over and over again. Available from
http://www.aspectsecurity.com/documents/Aspect HCSS
Brief.ppt (accessed June 2006), Mar. 2005.

[7] M. Zitser, R. P. Lippmann, and T. Leek. Testing static analy-
sis tools using exploitable buffer overflows from open source
code. In Proc. 12th Internt’l Symp. on Foundations of Soft-
ware Engineering, pages 97–106. ACM SIGSOFT, 2004.


