
Effect of Static Analysis Tools on Software Security:
Preliminary Investigation

Vadim Okun William F. Guthrie Romain Gaucher Paul E. Black
National Institute of Standards and Technology

Gaithersburg, MD 20899, USA
{vadim.okun, will.guthrie, romain.gaucher, paul.black}@nist.gov

ABSTRACT
Static analysis tools can handle large-scale software and find
thousands of defects. But do they improve software security?

We evaluate the effect of static analysis tool use on software
security in open source projects. We measure security by
vulnerability reports in the National Vulnerability Database.

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics – product metrics; D.2.4
[Software Engineering]: Software/Program Verification; K.6.5
[Management of Computing and Information Systems]:
Security and Protection

General Terms
Measurement, Security

Keywords
Software Security, Static Analysis Tools, Vulnerability

1. INTRODUCTION AND RELEVANCE
Security vulnerabilities are discovered every day in commonly
used software. The current publication rate in the National
Vulnerability Database (NVD) [11] is about 20 vulnerabilities per
day. These vulnerabilities may lead to costly security failures.

Since roughly half of all security defects are introduced at the
source code level [10], coding errors are a critical problem. The
ability of static analysis to infer information about a program
without execution makes it a good complement to testing to
discover defects in source code. This paper is concerned with
static analysis tools that work on source code (as opposed to other
artifacts) and look for defects that may affect security [4]. Such
tools are mature: they can handle large-scale software and find
thousands of defects. But does their use improve software
security?

One can think of several potential problems with the use of such
tools in practice. A tool may report many defects, but miss the
small number of serious security defects. If a developer takes a
mechanical approach to fixing defects reported by tools, he may
not think as much about the program logic and miss more serious
flaws. Also, the developer may spend time identifying false

positives (correct code reported as a defect) and correcting
unimportant defects reported, making other mistakes in the
process and neglecting harder security challenges. Recognizing
such problems, Dawson Engler asked the question: "Do static
analysis tools really help?" [6].

While Engler's question concerns both security and quality, we
are primarily interested in its security aspect. The goal of this
study is to evaluate the effect of tools on software security. We
examine this relationship on open source software projects. We
measure security by vulnerability reports in the NVD.

1.1 Related Studies and Experiments
A number of studies have compared different static analysis tools
for finding security defects, e.g., [13].

Researchers have evaluated security by looking at number of
reported vulnerabilities or failures. Zheng et. al [15] analyzed the
effectiveness of static analysis tools by looking at test and
customer-reported failures for three large-scale network service
software systems. They conclude that static analysis tools are
effective at identifying code-level defects.

Ozment and Schechter [12] examined the code base of OpenBSD
to determine whether its security is improving. They measured the
rate of vulnerability reports and found that, for foundational
vulnerabilities (introduced prior to the period covered by the
study), it decreases slowly. Our study also looks at vulnerability
reports, but our goal is to establish the effect of tools.

1.2 Definitions
The following definitions are adapted from [3]. Any event which
is a violation of a particular system's security policy is a security
failure, or simply a failure. A vulnerability is a property of system
security requirements, design, implementation, or operation that
could be accidentally triggered or intentionally exploited and
result in a security failure. A vulnerability is the result of one or
more weaknesses in requirements, design, implementation, or
operation. Sometimes we use term defect to refer to code
weakness.

2. MEASURING SOFTWARE SECURITY
There are many possible measures of software security.
Counting the number of weaknesses is not satisfactory because
some weaknesses can never result in a failure. Exploits of
vulnerabilities are more concrete, but are not widely reported and
are affected by adversaries’ tactics, which may change
dramatically.
We chose to use the number of reported vulnerabilities as a
measure of security because a vulnerability is a real problem and
it depends less on the choice of the adversary.

This paper is authored by an employee(s) of the United States
Government and is in the public domain.
QoP’07, October 29, 2007, Alexandria, Virginia, USA.
ACM 978-1-59593-885-5/07/0010.

Number of vulnerabilities that remain in a program is a more
useful measure than number of discovered vulnerabilities, but it is
unknown, except for trivial programs. To estimate it, [2] proposed
vulnerability discovery models, similar to software reliability
growth models used by the dependability community.
Thus our goal can be restated as being: evaluate the effect of tool
use on the number of reported vulnerabilities.

3. STUDY DETAILS
In order to discern the effect of tool use, we compare rates of
vulnerability reports:

• before and after the introduction of a static analysis tool

• between projects that use tools and those that do not

3.1 Data Collection
We use vulnerabilities reported in the NVD as an indicator of
software security. The NVD has thousands of vulnerabilities,
mostly from CVE [5]. The database lists vulnerable software and
versions along with other information. For example, in 2006 there
were 103 vulnerability reports for Firefox and two for Python.
The NVD contents are available for download as XML files; we
wrote scripts to parse and analyze the files.
Several assessments of open-source projects by static analysis
tools have been reported recently [1][7][8][9]. In particular,
Coverity1, with Stanford University, began using its Prevent tool
to analyze dozens of open-source projects in March 2006 [1],
resulting in the identification of many weaknesses. For example,
the Coverity scan reported over 600 defects in Firefox and over
70 defects in Python. The scan is ongoing. More details of the
scan are in Section 4.2. We use project web sites and mailing lists
to determine when fixes based on tool reports are made.

3.2 Confounding Factors
There are many confounding factors that may affect our
conclusions, some of which we list here.

Our data is based mostly on the use of Coverity tool and therefore
may not be representative of all static analysis tools.

Accurate vulnerability discovery dates may be hard to obtain.
First, a vulnerability may be reported long after it was discovered.
Second, prior to July 2005, vulnerability publication date in the
NVD represented the date when the vulnerability was analyzed,
which may be later than it was reported to CVE. For example, the
number of vulnerability reports in the NVD in May 2005 was
about 10 times as high as in the previous month. Some of those
vulnerabilities were actually reported in the preceding months.

Additionally, the NVD often does not have accurate information
about which versions of the software are vulnerable.

For some projects, fixes may come long after the tool feedback.

An increase in the program size or the user base can increase the
number of discovered vulnerabilities without an actual change in
security.

1 Any commercial product mentioned is for information only. It

does not imply recommendation or endorsement by NIST nor
does it imply that the products mentioned are necessarily the
best available for the purpose.

Some vulnerabilities may be discovered and reported through the
use of the tool itself. If not clearly identified, these vulnerabilities
could bias our evaluation of the tool effects.

Extrapolation of results is difficult because the scanned software
is not a random sample of projects. Also, the scope of the study is
limited to open-source projects.

Currently, the severity of vulnerabilities is not considered.

The rate of vulnerability reports may depend on the time of the
year (seasonal effects).

A major redesign may have a larger effect than the use of tools.
Also, project developers may be using other static analysis tools.

4. DATA ANALYSIS
4.1 Before vs. After Tool Use
We analyzed vulnerability reports for two projects: MySQL and
Samba. We call version X the first version of a project that
contains fixes based on static analysis tool reports.
Coverity scanned MySQL version 4.1.8 in early 2005 [9].
Version 4.1.10 (version X), released 15 Feb 2005, contains fixes
based on Coverity reports.
Coverity [1] and Klocwork [7] scanned Samba in the first half of
2006. Samba version 3.0.23 (version X), released 10 July 2006,
contains fixes based on Coverity and Klocwork reports.
Table 1 compares vulnerabilities discovered in version X or later
versions (the “after fix” row) with vulnerabilities discovered
before version X (the “before fix” row). “Discovery” means it
was reported in the NVD. We present data for four periods: six
months immediately before the version X release, six months
immediately after the version X release, and twelve months
immediately before and after. The 12-month periods include the
corresponding 6-months periods. The before period includes the
date of release of version X.

Table 1. Number of vulnerability reports before and after fix

vuln-s per period length Project
6-month 12-month

Before fix 9 12 MySQL
After fix 5 8
Before fix 2 2 Samba
After fix 0 6

The choice of period length is important. A 6-month period
minimizes effects of changes in project size and user base. A 12-
month period has the advantage of controlling for seasonal
effects.
For MySQL, we used as the discovery date the earlier of the
discovery dates in the NVD and in the SecurityFocus database
[14]. There was one vulnerability that was discovered after the
release of version X, but was only present in versions before
version X; this vulnerability was omitted from the counts.
For Samba, we used as the discovery date the earlier of the
discovery dates in the NVD and on the Samba web site.
The data for a 6-month period suggest some positive impact from
tool use, while the data for a 12-month period suggest some

negative impact. More data will be necessary to draw definitive
conclusions.

4.2 Projects with and without Tool Use
Figure 1 compares aggregates of vulnerability reports for projects
scanned by Coverity (left axis) with the aggregates for all other
projects in the NVD (right axis).

0

100

200

300

400

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

Vu
ln

er
ab

ili
tie

s

0

1000

2000

3000

4000

5000

6000

7000

Projects scanned by Coverity
All other projects in NVD

Figure 1. Vulnerabilities in the NVD during 12-month periods
Of the projects scanned by Coverity, we chose 45 which are being
scanned beginning in March 2006 and for which a meaningful
number of weaknesses have been verified and/or fixed by the
developers. Each point on the plot contains the number of
vulnerabilities discovered in the 12 months starting June 1, e.g., in
2006 the period is from 1 June 2006 to 30 May 2007. We chose
June 1 as the start of the period to better show the effect of tool
scans and allow for delay in fixes.
Figure 1 shows that the two curves are similar. This suggests that
the set of projects, chosen for the Coverity scan, has similar
characteristics to the rest of software projects. The divergence
between the two curves in the last years may be due to
confounding factors, such as the rapid increase in popularity of
Firefox and some other projects. The drop in vulnerability reports
for 2003 is attributed to a low output for CVE that year.
Table 2 is a stem-and-leaf plot that presents the changes in the
numbers of vulnerability reports for the 45 projects from the
Coverity scan in two most recent 12-month periods (1 June 2006
to 30 May 2007 and 1 June 2005 to 30 May 2006). The choice of
June 1, as opposed to May 1, as the start of the period allowed us
to exclude the effect of an unusually high number of vulnerability
reports in the NVD in May 2005 (see Section 3.2). Mapping
project names in the Coverity scan to the corresponding names in
the NVD involved human judgement and may have introduced
errors. For some projects, there were multiple names in the NVD,
either because a project was renamed or because of the
inconsistent data entry in the NVD.
A stem-and-leaf plot is similar to a histogram, but it has an
advantage of displaying individual values. In this plot, the leaf is
the last digit of a number; the other digits to the left of the leaf
form the stem. A positive number represents increase in the

number of vulnerabilities. The stem of 0 is for numbers between 0
and 9, the stem of -0 is for numbers between 0 and -9. Values that
are exactly 0 (no change in the number of vulnerabilities) are split
as evenly as possible between the “0” and “-0” rows. For
example, the “-1” row represents the number -10 (the number of
vulnerabilities decreased by 10). There were no values in the 50s,
40s, 30s, -20s, or -30s, so those rows are omitted. The top row of
the table represents the biggest increase in the number of
vulnerabilities, from 24 to 90, which occurred for PHP. The
bottom row represents the biggest decrease, from 119 to 73,
which occurred for Linux kernel. The table shows a nearly
symmetric distribution, with slightly more increases than
decreases, which suggests no positive effect from tool use on the
number of vulnerabilities reported for a given project over time.

Table 2. Changes in the numbers of vulnerability reports in
two most recent 12-month periods

Stem Leaf
 6 6
…
 2 2
 1 0
 0 0 0 0 0 0 0 0 0 1 1 1 1 1 2 2 3 3 3 3 6 7
-0 0 0 0 0 0 0 0 0 0 1 1 1 1 2 2 2 4 8 8
-1 0
…
-4 6

To try to ensure that the changes observed in the number of
vulnerability reports were not masked by the general increase in
the number of vulnerabilities reported over time, we compared the
results for the scanned projects to similar sets of projects drawn at
random from the NVD. In these comparisons 40 of the 45 projects
in Table 2 were used, omitting 5 projects that had multiple
corresponding names in the NVD. The two 12-month periods
used in these comparisons are the same as in Table 2.
The specific quantities compared for the scanned projects versus
the randomly sampled projects included the average change in the
number of reported vulnerabilities for sets of 40 projects and the
percentage of projects for which the number of reported
vulnerabilities decreased over time. Figure 2 and Figure 3 show
histograms of the results for 1000 sets of 40 projects sampled
completely at random from the NVD. The analogous results for
the 40 scanned projects are indicated by the dashed line shown on
each histogram.
As indicated by Figure 2, the distribution of the average change in
the reported number of vulnerabilities is significantly less for the
randomly selected sets of projects than for the scanned projects.
The scanned projects had about one more vulnerability on average
after scanning than was reported before scanning, while the
distribution of average change is centered near zero for the
randomly selected sets of projects. We cannot necessarily
conclude that scanning increases the number of vulnerabilities,
however, because the scanned projects may differ in some critical
way from the projects used to construct the baseline distribution.
Figure 3 shows the percentage of projects which had a decrease in
the number of reported vulnerabilities. In this case, however, the

0

100

200

300

400

500

600

700

-1
.2

50

-0
.7

50

-0
.2

50

0.
25

0

0.
75

0

1.
25

0

1.
75

0

2.
25

0

2.
75

0

Average Change in Reported Vulnerabilities

Fr
eq

ue
nc

y

Figure 2. Average change in reported vulnerabilities for 1000
sets of 40 projects drawn completely at random (histogram)
versus the 40 scanned projects (dashed line).

0
20
40

60
80

100
120

140
160
180

5% 10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

Percentage of Projects for which Reported
Number of Vulnerabilities Decreased

Fr
eq

ue
nc

y

Figure 3. Percentage of projects with a decrease in reported
vulnerabilities for 1000 sets of 40 projects drawn completely
at random (histogram) versus the 40 scanned projects (dashed
line).

comparison of the randomly drawn sets of projects and the results
for the scanned projects indicates that the scanned projects do not
appear to be atypical from those for the randomly selected
projects.
Because the appropriate population to serve as a baseline for the
scanned projects is not completely clear due to the non-random
sampling of the projects, we also repeated these comparisons with
sets of randomly selected projects from the NVD that were
sampled using stratified random sampling. The stratification was
based on a categorization of the number of vulnerabilities
reported for each project since the beginning of 2005 and was
matched to the analogous categorization of vulnerabilities
reported for the scanned projects. The results of these
comparisons are shown in Figure 4 and Figure 5.
The results shown in Figure 4 indicate that the average change in
the number of reported vulnerabilities is slightly more variable for

0

50

100

150

200

250

300

-2
.2

50

-1
.7

50

-1
.2

50

-0
.7

50

-0
.2

50

0.
25

0

0.
75

0

1.
25

0

1.
75

0

2.
25

0

2.
75

0

3.
25

0

Average Change in Reported Vulnerabilities

Fr
eq

ue
nc

y

Figure 4. Average change in reported vulnerabilities for 1000
sets of 40 projects drawn using stratified random sampling
(histogram) versus the 40 scanned projects (dashed line).

0

20

40

60

80

100

120

140

160

10
%

15
%

20
%

25
%

30
%

35
%

40
%

45
%

50
%

55
%

60
%

Percentage of Projects for which Reported
Number of Vulnerabilities Decreased

Fr
eq

ue
nc

y

Figure 5. Percentage of projects with a decrease in reported
vulnerabilities for 1000 sets of 40 projects drawn using
stratified random sampling (histogram) versus the 40 scanned
projects (dashed line).

projects similar to the scanned projects. The projects chosen for
scanning tended to be better known than the projects selected
completely at random and, presumably as a result, typically had
more reported vulnerabilities.
The difference in the average number of vulnerabilities is still a
bit larger than the corresponding results for the projects selected
using stratified random sampling, but the difference is not as
significant as with the projects sampled completely at random.
The results shown in Figure 5 again illustrate that the percentage
of scanned projects for which there was a decrease in the number
of vulnerabilities does not look atypical.
Taken as a whole, these comparisons further confirm that the data
collected using the techniques outlined here does not indicate that
the use of source code scanners has a strong effect on the number
of vulnerabilities reported for projects in the NVD. It is always
important to keep in mind the possible confounding factors,

discussed in Section 3.2 that may affect these results and
complicate their interpretation.

5. CONCLUSIONS AND FUTURE WORK
We devised an approach to evaluate the effect of static analysis
tools on software security. Our approach could also be applied to
other classes of tools and techniques. It harnesses the public
vulnerability data to measure security, as well as assessments of
open source projects using static analysis tools. This allows us to
apply the study to a large number of popular open source projects,
which will help generalize the results.
We presented aggregated data for many projects and more
detailed data for just two projects. The data did not indicate that
the use of static analysis tools has a strong effect on software
security. However, it is difficult to draw strong conclusions using
this data due to the large number of confounding factors. We plan
to collect more data from different sources including bug reports,
project web sites, and communication with developers, in order to
better control for confounding factors and allow more detailed
statistical analyses.
One useful approach to help control for confounding factors may
be to compare two projects for the same application type (e.g.,
two web browsers), where one project uses tools and the other
does not.
Our approach complements other approaches to evaluating the
effect of tools, such as industrial case studies [15] and controlled
experiments, which may also help answer the question of whether
the use of static analysis tools really affects software security.
Another future aim of this work is to find the types of
vulnerabilities on which tool use has the most or least impact.

6. ACKNOWLEDGMENTS
We thank Cyril Lan for many helpful suggestions on this paper.
We would also like to thank Ben Chelf for providing valuable
information about the Coverity scan of open source software and
Peter Mell for explaining the details of data collection in the
NVD.

7. REFERENCES
[1] Accelerating Open Source Quality, http://scan.coverity.com/
[2] O. H. Alhazmi, Y. K. Malaiya and I. Ray, Security

Vulnerabilities in Software Systems: A Quantitative
Perspective, IFIP WG 11.3 Working Conference on Data and
Applications Security, Aug. 2005.

[3] P.E. Black, M. Kass, and M. Koo, Source code security
analysis tool functional specification version 1.0, NIST SP
500-268, May 2007.

[4] B. Chess and G. McGraw, Static Analysis for Security,
Security and Privacy Magazine, IEEE, 2(6), pp 76-79, 2004.

[5] CVE – Common Vulnerabilities and Exposures, The MITRE
Corp., http://cve.mitre.org/

[6] D. Engler, Weird things that surprise academics trying to
commercialize a static checking tool,
http://www.stanford.edu/~engler/spin05-coverity.pdf

[7] C. Frye, Klocwork static analysis tool proves its worth, finds
bugs in open source projects, SearchSoftwareQuality.com,
June 2006.

[8] Java Open Review Project, Fortify Software,
http://opensource.fortifysoftware.com/

[9] S. M. Kerner, Study: MySQL Hard on Defects,
Internetnews.com, Feb. 2005.

[10] G. McGraw, Software security, Addison-Wesley, 2006.
[11] National Vulnerability Database, NIST, http://nvd.nist.gov/
[12] A. Ozment and S. E. Schechter, Milk or Wine: Does

Software Security Improve with Age? 2006 Usenix Security
Symposium, Vancouver, B.C., Canada, 31 July-4 Aug. 2006.

[13] N. Rutar, C. B. Almazan and J. S. Foster, A Comparison of
Bug Finding Tools for Java, 15th IEEE Int. Symp. on
Software Reliability Eng. (ISSRE'04), France, Nov 2004.

[14] SecurityFocus, http://www.securityfocus.com/vulnerabilities
[15] J. Zheng, L. Williams, N. Nagappan, W. Snipes, J. P.

Hudepohl, and M. Vouk, On the Value of Static Analysis for
Fault Detection in Software, IEEE Trans. on Software
Engineering, v. 32, n. 4, Apr. 2006.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings false
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects true
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /Unknown

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

