
Proceedings of Static Analysis Summit II
Paul E. Black (workshop chair)

Elizabeth Fong (editor)
Information Technology Laboratory

U.S. National Institute of Standards and Technology (NIST)
Gaithersburg, MD 20899

Static Analysis Summit II (http://samate.nist.gov/SASII) was held 8 and 9 November
2007 in Fairfax, Virginia,and was co-located with SIGAda 2007. A total of 61 people
registered, coming from government, universities, tool vendors and service providers, and
research companies. The workshop had a keynote address by Professor William Pugh,
paper presentations, discussion sessions, a panel on “Obfuscation Versus Analysis – Who
Will Win?”, and a new technology demonstration fair. The workshop is one of a series by
NIST’s Software Assurance Measurement and Tool Evaluation (SAMATE) project,
which is partially funded by DHS to help identify and enhance software security
assurance tools.

The Call for Papers pointed out that "Black-box" testing cannot realistically find
maliciously implanted Trojan horses or subtle errors with many preconditions. For
maximum assurance, static analysis must be applied to all levels of software artifacts,
from models to source code to binaries. Static analyzers are quite capable and are
developing quickly. Yet, developers, auditors, and examiners could use far more
capabilities. The goal of this summit is to convene researchers, developers, and
government and industrial users to define obstacles to such urgently-needed capabilities
and try to identify feasible approaches to overcome them, either engineering or research.

The Call for Papers solicited contributions describing basic research, applications,
experience, or proposals relevant to static analysis tools, techniques, and their evaluation.
These proceedings include the agenda, some discussion notes, and reviewed papers.

We are especially grateful to Prof. William Pugh for the enlightening keynote address. I
thank those who worked to organize this workshop, particularly Wendy Havens, who
handled much of the correspondence. We appreciate the program committee for their
efforts reviewing the papers. We are grateful to NIST, especially the Software
Diagnostics and Conformance Testing Division, which is in the Information Technology
Laboratory, for providing the organizers' time. On behalf of the program committee and
the SAMATE team, thanks to everyone for taking their time and resources to join us.

Dr. Paul E. Black
February 2008

Disclaimer: Any commercial product mentioned is for information only; it does not imply recommendation
or endorsement by NIST nor does it imply that the products mentioned are necessarily the best available for
the purpose.

Static Analysis Summit II Agenda

Thursday, 8 November, 2007

12:45 : Static Analysis for Improving Secure Software Development at
 Motorola - R Krishnan (Motorola), Margaret Nadworny (Motorola), and
 Nishil Bharill (Motorola)

1:10 : Discussion: most urgently-needed capabilities in static analysis

1:40 : Evaluation of Static Source Code Analyzers for Real-Time Embedded
 Software Development - Redge Bartholomew (Rockwell Collins)

2:05 : Discussion: greatest obstacles in static analysis

2:50 : Common Weakness Enumeration (CWE) Status Update – Robert
 Martin (MITRE) and Sean Barnum (Cigital)

3:15 : Discussion: possible approaches to overcome obstacles

3:45 : Panel: Obfuscation vs. Analysis - Who Will Win? – David J. Chaboya
 (AFRL) and Stacy Prowell (CERT)

4:30 : New Technology Demonstration Fair
 FindBugs, FX , Static Analysis of x86 executables

Friday, 9 November, 2007

8:30 AM: Discussion: Static Analysis at Other Levels

9:00 : Keynote: Judging the Value of Static Analysis - Bill Pugh (UMD)
 The slides for the keynote address are on-line at
 http://www.cs.umd.edu/~pugh/JudgingStaticAnalysis.pdf

10:15 : A Practical Approach to Formal Software Verification by Static

 Analysis - Arnaud Venet (Kestrel Technology)

10:40 : Discussion: inter-tool information sharing

11:10 : Logical Foundation for Static Analysis: Application to Binary
 Static Analysis for Security - Hassen Saidi (SRI)

11:35 : Wrap up discussion: needs, obstacles, and approaches

Discussion and Panel Notes
To catalyze discussion, we presented six questions or topics. The discussions were not
meant to reach a consensus or express a majority, and seldom did they. Workshop
participants presented ideas, questions, recommendations, cautions, and everything in
between. Although we try here to note what was said, it is by no means a complete record
of what was discussed (none of us wrote fast enough). In some cases we combined
similar comments across sessions. We hope these notes convey some feel for the
discussions and lead to improvement.

1:10 PM Most Urgently-needed capabilities in Static Analysis

Facilitator: Vadim Okun, NIST

Be able to analyze
Concurrent/race conditions
Timing
Runtime dispatch, deep hierarchies, highly polymorphic systems
Function pointers
Integer overflow
Numeric computations accurately (comment was: Inaccurate numeric analysis)
Inline assembly with multi-languages across multi-boundaries

General capabilities needed/capabilities missing
Lack of reasoning for reporting
Reduce false positives
Report the probability that a weakness is exploitable.
Tool reports what its coverage, that is, what it looks for
Scalability (e.g., 100 million lines)
Whole application analysis
A standard way to express environment in a standard way so one can state what is

known, so the next tool doesn’t have to do the same thing.
Need guarantee that if we run this tool, we will not have these exploits.

2:05 PM Greatest Obstacles in static Analysis

Facilitator: Paul E. Black, NIST

Need scientific surveys or studies that show return on investment of tools.

Its likely there is at least one tool for each of the things on the wish list. We need a
toolbox.

Tools do not know what the requirements are, what the program is supposed to do. To go
beyond buffer overflow, which is (almost) always a violation, tools need a specification,
like IFIL. Java has JML, and there is Splint for C, but we can’t get people to use
annotations! We need an easier way to write annotations.

Programmers need skill sets for good code creation; they should be reinforced by tools.

The European safety community has used static analysis for years. They made their case.

3:15 PM Possible Approaches to Overcome Obstacles

Facilitator: Redge Bartholomew, Rockwell Collins

Vendor should provide information about what exactly the tools find.

Many people are skeptical about using test sets, particularly fixed sets, to evaluate tools.
Tools get tailored to test suites.

You can’t include a tool in certification efforts until it is very well qualified. Tests are
necessary, but not sufficient.

There was a discussion about funding better software, both research and development of
techniques and paying well for good quality software. Rod Chapman said, you cannot
polish junk. (That is, software must be built well from the beginning. No amount of tools
or techniques can “repair” poor software.) He also said, if all software is junk, we might
as well buy cheap junk. (That is, if consumers can’t judge the quality of software, it is
logical in today’s world to assume the worst of software. Therefore people won’t pay
much for software tools or programs.)

3:45 PM Panel: Obfuscation vs. Analysis – Who Will Win?

Malware writers use obfuscation to disguise their programs and hide their exploits. Good
guys need powerful analysis to crack malware quickly. Good guys also use obfuscation to
protect intellectual property, and in military applications, hinder enemies from figuring
out weapon systems (remember the Death Star?). They don't want bad guys to crack their
techniques. This panel was set up to explore who will win and why.

The panelists gave very good presentations, but instead of entertaining controversy, they
agreed that analysts ultimately win.

8:30 AM Static Analysis at Other Levels

Facilitator: Michael Kass, NIST

Here are other static analysis applications or targets, in addition to the “default” source
code analysis for bugs:

Requirement analysis (lots of resistance from implementers because it is yet another
language to learn, but probably will happen)

Architectural design review
Compiler/Decompilers
Code metrics generation, e.g., measuring code
Program understanding

Reverse engineering (e.g., byte code to UML design)
Re-engineering (e.g., re-factoring)
Program/property verifier
Binary analysis (they are as good as source analyzers if you have the symbol table)

The audience suggested more static analysis tools:

Source to source transformers
Same language translator (e.g., debugger, dissembles, emulators)
Threat modeling tools
Impact analysis/slicers
Model checker (it is not useful unless there is some manual checking)
Combining static and dynamic analysis (e.g. static analysis plus testing, static analysis

and program verification)

10:40 AM Inter-tool Information Sharing

Facilitator: Paul E. Black, NIST

The most important requirement for inter-operation of tools is to have common reporting
format. Many companies have more than one type of tool, and to facilitate integration
among these different tools in a user-friendly environment, it is useful to have one tool’s
output become another tool’s input.

To promote progress, here are some use cases for information sharing:
Generic format to explain “reasoning” of a bug report
SA tool -> infeasible paths -> testing
SA tool -> no alias in blocks, etc. -> compiler optimization

11:35 AM Wrap Up discussion: Needs, Obstacles, and Approaches

Facilitator: Paul E. Black, NIST

The biggest need is for people to agree on what content to share and common report
formats. One needs to get information from runs into static analysis as the basis of hints,
hypotheses, or invariants. We need to identify use cases for information sharing. The
biggest challenge today is for tool to explain (to another tool or to human) the following:

The complicated path and the “reasoning” or evidence of a bug report.
The information provided to an assurance case (e.g., guaranteed no SQL-injection)
What areas (either code blocks or types of problems) are NOT analyzed.

Such work needs to address the different needs of auditors, assessors and developers.

The recommendation is for NIST to conduct a tool exposition. Tool vendors should sign-
up to run their tools with NIST’s selected test source programs.

A burning issue is an effective way to get feedback from users about tools.

 Static Analysis Tools for Security Checking in Code at Motorola
 R Krishnan, Margaret Nadworny, Nishil Bharill

Motorola Software Group
<krishnanr@motorola.com; Margaret.Nadworny@motorola.com; Nishil.Bharill@motorola.com>

Abstract
As part of an overall initiative to improve the secu-
rity aspects in the software used in Motorola’s
products, training and secure coding standards
were developed. The goal is to decrease the num-
ber of security vulnerabilities introduced during
the coding phase of the software development
process. This paper describes the creation of the
secure coding standards and the efforts to auto-
mate as many of the standards as possible.

Originally, the efforts focused on the Inforce tool
from Klocwork, as many Motorola business units
already used the tool for quality but without the
security flags activated. This paper describes the
efforts to evaluate, extend, and create the coverage
for the secure coding standards with Klocwork.
More recently, an opportunity arose which allowed
a team to evaluate other static analysis tools as
well. This paper also describes the findings from
that evaluation.

Keywords: static analysis, security, Klocwork

Introduction
Security is one of the key product quality attributes
for products and solutions in telecommunications. A
denial of service attack on a telecom network could
mean a huge loss in revenue to the operator. With
mobile phones used increasingly for a wide range of
services beyond telephony from messaging to online
shopping, security has become an important aspect of
the software on these devices. Factors such as the in-
creased connectivity of devices and the use of open
source software increase the security risks. As a re-
sult, Motorola has increased the priority and attention
to the security related aspects of its products.

Motorola Software Group is a software development
organization existing in the Corporate Technology
Office providing software resources and services to all
of the Motorola Businesses.

The approach within Motorola Software is to build
security into the products throughout the development
lifecycle. Changes in software development are insti-
tutionalized when they become part of the process,

with appropriate tool support and with the engineering
community trained on the required tools and process
changes. This approach is depicted in Figure-1. Spe-
cifically, to instill a security focus in the coding phase,
the coding standards are enhanced with security rules,
training is required on the basic concepts relating to
secure programming, and a static analysis tool is used
to automate the identification of any violation of the
security rules.

Security Focus in the Coding Phase

The coding phase is recognized as a key phase, where
vulnerabilities are introduced by the developers into
the code which put the system at risk from attack.
The vulnerabilities targeted include buffer overflow
and format string vulnerabilities. This area was
viewed as requiring relative low effort in terms of
changing processes but high impact in improving the
security of the products. As a result, the coding
phase was the first area of security change within the
organization.

Recognized security experts from FSC, now Assurent,
a subsidiary of TELUS, were engaged to assist with
the development of Secure Programming Training to
educate the engineers on the need, importance, and
details of Secure Programming. In addition, the As-
surent staff assisted in the enhancement of the coding
standards for C, C++, and Java with security rules.
Previously, the coding standards for quality focused
on the readability and maintenance aspects of the
code. The security rules introduced significant con-
tent, addressing what was and what was not recom-
mended from the security perspectives. The content is
segregated into rules which are mandatory and guide-
lines which are recommended and are optional.

For the C coding standards, twenty-three rules and
twenty-one guidelines were introduced and adopted.
The rules include the following aspects:

• Buffer Overflows
• Memory allocation and deallocation
• Handling of resources such as filenames

and directories
• Use of library functions
• Overflows in computation
• Avoiding format string vulnerabilities
• Input validation

• Handling of sensitive data
• and others.

For the C++ coding standards, thirty two rules and
three guidelines were introduced and adopted. The
rules cover the following aspects:

• Memory allocation
• Avoiding C-style strings
• Initialization
• Pointer casting
• Use of vectors instead of arrays
• Orthogonal security requirements
• Exceptions
• Use of STL (Software Template Library)
• and others.

For the Java coding standards, sixteen rules and three
guidelines were incorporated. The rules include the
following aspects:

• Use of secure class loaders
• Object Initialization
• Securing of packages, classes, methods, variables
• Handling of sensitive data
• Random number generation
• Comparison of classes
• and others.

Pr
oc

es
s

Training

Tool
Instill

Change

Pr
oc

es
s

Training

Tool
Instill

Change

Figure-1: Instill Change in the Implementation Phase

Static analysis tools help in automatically detecting
violations of the security rules.

Originally, the efforts focused on the Inforce tool
from Klocwork as many Motorola Business Units
already used the tool for quality but without activated
security flags. More information about Klocwork is
available on their web site at: www.klocwork.com.
No other tools were seriously considered initially.
Supporting two different static analysis tools, one for
quality and another for security, was not practical for

three reasons: licensing costs, productivity inefficien-
cies and vendor management.

Supporting the Security Rules in Klocwork
The following process was used to collaborate with
Klocwork to support the Motorola Coding Standards.
The security rules in the coding standards were
analyzed and the opportunities for automatic detection
of violations to the coding standard were identified.
Some rules, by the nature of their content, cannot be
verified through static analysis. An example of such a
rule is: “Resource paths shall be resolved before
performing access validation”. This particular rule
must be verified through usual inspection practices.
This overall analysis of which rules could be auto-
mated was a collaborative effort with the Klocwork
technical team.

Inforce
w/ security

Code

Inspection

Security
Issues?

Security
Issues?

Release

…

Secure Programming
Training

Secure Coding
Standards

No

Give Up?

No

Yes

Yes

Give Up?

No

Document unresolved
Issues in release notes

Yes

Yes

No

Security Role to
Address unresolved
KW Security issues
and other security

concerns

Figure-2: Use of Klocwork Inforce with Security
Flags

Test cases were created for each of the rules verifiable
through static analysis. Negative testcases create
instances of violation of each security rule. The tool is
intended to catch and flag these negative errors.
These negative test cases check for false negatives.
Positive testcases are instances that are in
conformance to the rule. The tool is not expected to
flag errors on these testcases. These positive testcases
check for false positives.

The existing checkers available in Klocwork were
analyzed. Gaps between the available checkers and
the verifiable security rules were identified.
Klocwork has a feature where additional checkers can
be created without waiting for the next release of the
tool. These extensibility checkers were used to
address the identified gaps.

The new extensibility checkers identified were
developed and delivered by Klocwork, in a phased
manner for C and Java. The success criteria for these
extensibility checkers were to detect the violations in
the negative testcases and pass the positive testcases.
The C extensibility checkers have not been
incorporated into Klocwork’s general releases due to
legal intellectual property related issues, which is also
why they are not described in further detail. Activities
have been initiated to revisit this situation. These
extensibility checkers were delivered to Motorola and
confirmed. The situation for Java was handled
similarly. The checkers were written by Klocwork
but were integrated into Release 7.5, as Klocwork
determined that the security rules could be identified
from published material. For the C++ security rules,
Motorola software group engineers in Bangalore were
trained by Klocwork to write extensibility checkers.
The Bangalore team developed the checkers in-house.

Table-1 shows the progress made in the Klocwork
Inforce tool with this activity. The first column pro-
vides the programming language. The second column
provides the total number of security rules including
subrules for the corresponding programming lan-
guage. The third column provides the total number of
security rules and subrules which could be automated.
The fourth column indicates the number of rules suc-
cessfully supported in earlier versions of Klocwork,
specifically version 6.1 for C and C++ and 7.1XG for
Java. This represents the initial results from this ac-
tivity. The fifth column provides the number of rules
successfully supported since Klocwork 7.5. For C,
Klocwork 6.1 supported eight rules in Klocwork
which was extended to support twenty-two rules in
Klocwork 7.5. For C++, Klocwork 6.1 supported two
rules which were extended to support nineteen rules in
Klocwork 7.5. For Java, Klocwork 7.1XG supported
two rules in Klocwork which was extended thirteen
rules in Klocwork 7.5. The improvement has been
impressive but is by no means complete.

Klocwork Benchmarking Activity
Buffer overflow is one of the most dangerous coding
vulnerabilities in software that continues to be
exploited. It has obtained the attention of researchers
as well, including the Software Assurance Metrics and

Tools Evaluation (SAMATE) [4] project, sponsored
by the U.S. Department of Homeland Security (DHS),
National Cybersecurity Division and NIST.

The required scripts were developed to utilize the test
cases/code snippets offered by the MIT Test suite [1]
and were passed through Klocwork with all the errors
enabled. Overall, five defects were identified in the
Klocwork tool itself. Change requests have been
submitted to Klocwork and the errors will be ad-
dressed in the upcoming 8.0 release of Klocwork. The
defects identified include:

• Violation on access to shared memory
• Function call used as an array index with re-

turn value exceeding array bounds
• Array element value used as index in ac-

cessing another array exceeding array
bounds

• Use of function call in strncpy for the value
of n, exceeding array bounds

• Accessing beyond bounds, after assigning
the array start address to a pointer variable.

SAMATE[4] provides a set of testcases for different
languages like C, C++, Java, PHP, etc. A study was
performed to understand the coverage of the security
rules in the Motorola coding standards in this refer-
ence data set. There are 1677 testcases for C and 88
testcases for C++ in the SAMATE reference dataset.
These testcases cover aspects such as memory leaks,
double free memory errors, input validation, buffer
overflow of both stack and heap, null dereference,
race condition, variable initialization, command injec-
tion, cross-site scripting, format string vulnerabilities
and so on. There was considerable overlap between
the Motorola test suite and the SAMATE test suite.
Thirteen of the security rules in the Motorola Software
C coding standard are covered in the SAMATE test
set. Four of the security rules in the Motorola Soft-
ware C++ coding standard are covered in the
SAMATE test set.

There are thirty-three testcases for Java in the
SAMATE reference dataset. These testcases cover
aspects such as tainted input, arbitrary file access,
tainted output, cross-site scripting, memory resource
leaks, and return of private data address from public
methods. There are no overlaps with the security rules
in the Motorola Software Java coding standard. This
is summarized in Table-2.

One of the major shortcomings identified with
Klocwork was its inability to identify the use of
uninitialized array variables. The Klocwork team has

analyzed and identified particular aspects of this
general problem:

Lan-
guage

Number
of Secu-

rity Rules

Number
of Auto-
mated
Rules

Support in
Klocwork

6.1

Support in
Klocwork

7.5

C 39 25 8 22

C++ 34 25 2 19

Java 16 5 9 13

Table-1: Security Rules support in Klocwork

• Uninitialized use of array elements of simple
variable type

• Uninitialized use of array elements of complex
variable type such as arrays of structures or
pointers

• Uninitialized use of global arrays
• Partial initialization determination: being able

to identify that some elements are initialized
and some are not

• Interprocedural initialization with initialization
occurring in a different function.

Factors like complex data types, global array vari-
ables, partial initialization, and the need for interpro-
cedural analysis make detection of uninitialized use of
array elements technically difficult for static analysis
tools. Klocwork promises to provide a phased solution
over the next couple of releases.

Language Number of
SAMATE Tests

Number of Motorola
Rules Covered

C 1677 13

C++ 88 4

Java 33 0

Table-2: SAMATE Testcases and Motorola Coding Standard
Rules.

The inability to identify uninitialized array elements
was the root cause for issues identified in field testing
of some of Motorola products. The initial response
from Klocwork, after reporting this problem, triggered
the assessment of other popular security static analysis
tools with Klocwork. As the intention of this paper is
to create improvement in all security static analysis
tools, the names of the other tools will be referenced
here as Tool X, Tool Y, and Tool Z. Table-3 shows
the comparison of these other tools with the Motorola
developed testcases as the basis for comparison. The
first column represents the programming language
evaluated. The second column provides the total

number of security rules including subrules. The third
column provides the Klocwork results for release 7.5.

Lang-
uage

Number
of Secu-

rity Rules

Kloc
work
7.5

Tool
X

Tool
Y

Tool
Z

C 39 22 7 7 5

C++ 34 19 0 1 1

Java 16 13 2 1 0

Table-3: Support for Motorola Security Rules in Static Analysis
Tools.

The last three columns show the results from three
well known security static analysis tools. Detailed
results for this benchmarking activity can be found in
Appendix A for C, Appendix B for Java, and Appen-
dix C for C++. Because none of the positive test cases
detected any false positives in this activity, this paper
does not elaborate further.

Observations:
• Klocwork is significantly better supporting

the security rules in the Motorola Coding
standards due to the collaboration.

• Our partnership with Klocwork has been a
major factor in the support to these security
rules in their tool suite.

• Support for detecting uninitialized use of ar-
ray elements is weak in the major static
analysis tools for security. Tool X and
Klocwork could handle detection of unini-
tialized use of array elements of simple data
types. These tools, however, suggest that if a
single element of the array is initialized, then
the entire array is considered to be initialized.
Obviously, there is room for improvement.

• None of the tools address detection of com-
plex, global, or interprocedural uninitialized
array variables.

• All the tools detected basic buffer overflow
and format string vulnerabilities

Please note that by combining the information in table
1 and table 3, Klocwork identified more of the secu-
rity rules than the other tools even prior to Motorola’s
engagement with them. The significance of this ac-
tivity is that one must be aware of the relevant secu-
rity rules applying to their domain before engaging
any static analysis tool. This engagement is not suffi-
cient with simple tool usage but must be significantly
extended for product security. Most of the static
analysis tools support extension capability, and the
tools X, Y, Z also support extensions. Since Klocwork

fared better in comparison with the other tools, the
extension capability of the other tools was not studied
in depth.

Opportunities

In Motorola’s experience, use of static analysis tools
has helped identify and correct a significant number of
vulnerabilities in the coding phase. However, beyond
the coverage of test cases indicated in this paper, there
remain some opportunities for improvement for static
analysis tools. The first opportunity is the consider-
able analysis required to prune the outputs of false
positives. While all of the tools allow some means to
minimize the effect, more effort is required. Sec-
ondly, the implementation of the checkers is typically
example driven. As a result, the checker implementa-
tion can be only as complete as the set of examples.
This creates the potential for false negatives. Finally,
even though a relatively large range of memory re-
lated errors including memory leaks are reported by
static analysis tools, there is still a need to run dy-
namic analysis tools for things like memory leak de-
tection [3]. It would be a great benefit, if there could
be improved techniques for memory leak detection
and other memory related errors in static analysis
tools. This type of capability could save a lot of time,
effort and cost for software development organiza-
tions. Even the creation of an exhaustive test suite of
memory related errors with a comparison of the popu-
lar static and dynamic analysis tools ability to detect
all the different types of memory errors would be a
big step forward.

In one open source code implementation of the https
protocol, three high severity errors were identified in
the original code and 17 high severity errors were
identified in internally modified code. These errors
related to security were detected, by running the code
through Klocwork Inforce tool with the security op-
tions enabled. This example demonstrates the need
for usage of such a tool for third party software as
well as for internally developed software.

Recommendation

The paper thus far may read as a white paper for
Klocwork. The value of this paper is in the approach
used to make the software developed within our or-
ganizations better from both a quality and security
perspective. First of all, it is important for an organi-
zation to take responsibility for the security of its
software instead of relying on external security
mechanisms. Secondly, in response to a significant
number of security vulnerabilities in the coding phase,
it is highly recommended to identify coding standards

for the organization to follow. These coding stan-
dards can be reinforced through training and inspec-
tion. However, to optimize the return from these
coding standards, they should be automated where
possible. Our experience demonstrates that the com-
mercial static analysis tools are lacking in a number of
important security areas. It is absolutely necessary for
people to own the security requirements for their static
analysis tools and work with the vendor to enhance
the capabilities. The tools lag the known concepts
behind secure practices. Finally, one has to combine
automated methods with manual methods such as in-
spection to capture as many of the errors as possible.

Conclusion

In this paper, the Motorola experience and approach
in bringing a security focus to the coding phase has
been shared, especially the use of static analysis tools
for security. External experts in the security field were
engaged for training and process enrichment. In par-
ticular, the coding standards were enhanced with se-
curity rules. After implementing the security enhanced
coding standards, supporting these new standards in a
static analysis tool became a major focus area. A
majority of project teams in Motorola were already
using the Klocwork tools for quality, which was a
major factor in our use of this particular tool. How-
ever, a good percentage of these security rules were
not detected by the tool. The vendor agreed to work
with Motorola to improve the detection of violations
to the security rules in the code and the related work
has been described in this paper. The results from a
couple of benchmarking exercises are also presented.
A test suite published from MIT on buffer overflow,
was used to identify and close the identified gaps in
the Klocwork Inforce tool. In another study reported
in this paper, popular static analysis tools were evalu-
ated based on their support for the security rules in the
Motorola coding standards. Based on this experience
with static analysis tools, several opportunities for
improvement in use of this technology were identi-
fied.

References
[1] Kratkiewicz, K. J. (May, 2005). Diagnostic Test
Suite for Evaluating Buffer Overflow Detection Tools
– the companion test suite for "Evaluating Static
Analysis Tools for Detecting Buffer Overflows in C
Code. Retrieved September 11, 2007 from
http://www.ll.mit.edu/IST/pubs/KratkiewiczThesis.pdf

[2] Howard, M., and LeBlanc, D. (2003). Writing
Secure Code. Redmond, Washington: Microsoft
Press.

[3] Wikipedia (N.D.) Definition of Memory Leak .
Retrieved September 11, 2007 from
<http://en.wikipedia.org/wiki/Memory_leak>

[4] Software Diagnotics and Conformance Testing
Division. (July 2005) SAMATE- Software Assurance
Metrics and Tool Evaluation. Retrieved September
11, 2007 from
http://samate.nist.gov/index.php/Main_Page

Appendix A
C Secure Coding

Standard
Test
Case

KW
6.1

KW
7.5

X Y Z

Memory Allocation
Check

1 X X X

“Large” Arrays
Flagged

2 X EC X

Access control for
sensitive variables

 EC

Special characters in
filenames or vari-
ables

4 X EC

Safe directories for
file access

 EC

Check permissions
prior to access file-
names

18 EC X

User rights checked
for file access

 EC

Null termination of
string buffers

12 X

Check return codes
of library functions

5 EC X

%n substitution 15 EC

Reference uninitial-
ized variable

6 X X X

Unsafe library func-
tions

7 X X X X X

Check variable
lengths in unsafe
functions

19 X X X X

Integer Overflow

For addition and
multiplication, result
should not exceed
operands

9

Expressions as func-
tion call parameters

20 EC

Buffer Overflow 10 X X X X X

Element references
within array bounds

11 X X X X

X indicates the coding standard is covered in the
native code. EC indicates that the coding stan-
dard is covered partially or completely by an ex-
tensibility checker.

C Secure Coding
Standard, continued

Test
Case

KW
6.1

KW
7.5

X Y Z

String manipulation
arrays are null ter-
minated

12 X X X

Externally provided
strings not to be
used in format string

13 EC X X X

%s for printf 14 X

X indicates the coding standard is covered in the na-
tive code. EC indicates that the coding standard is
covered partially or completely by an extensibility
checker.

Appendix B
Java Secure Coding

Standard
Test
Case

KW
6.1

KW
7.5

X Y Z

Restrictive Security
Policy

 X

Secure Class Loader X X

Initialization of Ob-
jects

3 X X

Private classes,
methods, variables

4 X X

Finalized classes and
methods

5 X X

Class Cloning 7 X X X

Serialization 8 X

Undeserializeable
Classes

9 X

Static Field Vari-
ables

10 X X

Inner Classes and
sensitive data

11 X

Arrays and Strings
with sensitive data

13

Random Number
Generator

14 X X X X

Class Comparison
by Name

15 X X

Appendix C
C++ Secure Coding

Standard
Test
Case

KW
6.1

KW
7.5

X Y Z

Object Memory Allo-
cation Check

1 EC

I/O Streams in C-style
strings

2 X

C-style strings 3 EC

Conversion to C-style
strings

4 EC

Throw/ “New” Opera-
tor

5 EC

Initialize primitive
types

6 X X X

Array Initialization 7 X X

Deleting with void
pointers and objects
w/children

9 EC

Non-primitive array
manipulation

 EC

Object Slicing` 10 EC

Pointer casting 11

C-style casting and
static _cast

12a,b

Delete[] for array 8

Array use vectors 14 EC

Safe accessor methods 15 EC

Virtual destructor of
base, polymorphic
classes

17

Auto pointers 31 EC

Public method checks
arguments

21

Static member vari-
ables

22 EC

Pointers to temporary
objects

23 EC

Exception handling 24 EC

Exceptions throw
objects and not point-
ers

26 EC

Catch exceptions 27 EC

Unhandled exceptions 28 EC

Evaluation of Static Source Code Analyzers for Avionics Software
Development

Redge Bartholomew
Rockwell Collins

rgbartho@rockwellcollins.com

Abstract

This paper describes an evaluation of static source
code analyzers. The purpose of the evaluation was to
determine their adequacy for use in developing real-
time embedded software for aviation electronics where
the use of development tools and methods is controlled
by a federal regulatory agency. It describes the
motivation for the evaluation, results, and conclusions.

1. Introduction

Business issues motivate avionics developers to
accelerate software development using whatever tools
and methods will reduce cycle time. At the same time
the FAA requires that all software development tools
and methods comply with RTCA DO-178B, which
requires disciplined and rigorous processes that can
also be time consuming and expensive. Source code
reviews and structural coverage testing, for example,
are both required, and both typically involve
considerable manual effort. An obvious solution within
the faster-cheaper-better spiral of continuous
development improvement is automation: perform the
required analysis, testing, and documentation using
tools that replace inconsistent and expensive human
actions with consistent and (comparatively) cheap
machine actions.

A static source code analyzer is an example.
Potentially, it could replace manual source code
reviews, some of the structural coverage testing,
enforce compliance with a project coding standard, and
produce some of the required documentation. In
addition, by eliminating a large number of latent errors
earlier in the development cycle, it could significantly
reduce down stream activities like unit, integration,
and system test. The number of errors a static analyzer
has found in open source software provides anecdotal
support for this last possibility [8].

However, the use of a static analyzer for avionics
development encounters an issue that standard desktop
development typically does not. The development

process, tools, and qualification plans as described in
the Plan for Software Aspects of Certification (RTCA
DO-178B, paragraph 11.1), or its referenced plans,
must be approved by the FAA’s Designated
Engineering Representative. To be cost effective, static
analysis tools might have to be accurate enough and
cover a broad enough spectrum of errors that the FAA
would allow their use to replace manual analysis: if
full manual analysis is still required, the amount of
effort its use eliminates may not be large enough to
justify its acquisition and usage costs.

In addition, some appeared to scale poorly, some
appeared to have high false positive rates, some
seemed to have ambiguous error annunciation markers,
and some appeared to integrate poorly into common
development environments. These issues could
significantly reduce any benefit resulting from use.

This paper describes an internal evaluation of static
source code analyzers. It had 3 objectives: to
determine if static source code analyzers have become
cost effective for avionics software development; to
determine if they can be qualified to reduce software
developers verification work-load; and to determine
conditions under which avionics software developers
might use them. There was no effort to determine
down-select candidates or a source-selection candidate,
nor was there any effort to achieve statistically
significant results. It provided input to a decision gate
in advance of a proposed pilot project.

In addition, it relied on software subject to
publication restriction and on information subject to
proprietary information exchange agreements. As a
result, neither product names nor vendor names are
identified. Information that could imply product or
vendor has been withheld.

2. Background and Scope

2.1 Effectiveness

One concern over the use of a static analyzer was

whether it could reduce down-stream development

mailto:rgbartho@rockwellcollins.com

costs by reducing rework: whether tools can detect
kinds of errors and quantities of errors that manual
code reviews typically do not, that typically escape
into downstream development and maintenance
phases.

Another concern was whether they could reduce the
cost of compliance with verification standards by
automating manual source code reviews, or parts of
them. If a static analyzer could be qualified against
specific classes of errors (e.g., stack usage, arithmetic
overflow, resource contention, and so on) and shown
accurate above some minimum threshold, then it might
be possible to eliminate those error classes from the
manual reviews. Instead, an artifact could be submitted
demonstrating that the check for those error classes
was performed automatically by a qualified tool. Error
classes not included in the tool qualification would still
be subject to manual review.

A final concern was whether the use of an
unqualified static analyzer as a supplement to a manual
review would increase the number of downstream
errors. If a static analyzer is effective against some
kinds of errors but not others – e.g., catches pointer
errors but not arithmetic overflows – this could be the
case. Code reviewers could assume static analyzers are
equally effective against all classes of errors, and
minimize the effort they put into the manual analysis.

2.2 Scope

Time and resources did not allow for a

determination of average number of errors detected by
manual source code review versus those detected by a
static analyzer. There is enough anecdotal evidence of
errors escaping manual review into the test phase to
suggest that a static analyzer will typically detect
quantities of errors within a targeted error category that
manual review will not. A comparison of effectiveness
between manual and automated analysis limited to the
error categories within which a given tool was
designed to operate is a logical next step.

Currently, vendors advertise software security and
software assurance capabilities. Security in the static
analysis context appears to signify resistance to cyber
attack and focuses on detection and elimination of
errors that in the past have frequently been exploited to
deny or corrupt service (e.g., buffer overflow).
Assurance appears to signify the detection of the broad
band of unintended latent errors whose detection in the
real-time embedded context is the subject of source
code walkthroughs and structural analysis testing.
There appeared to be no error set that could distinguish
assurance from security, nor did there appear to be

separate static analysis products exclusive to assurance
versus security. The focus of this evaluation was
software assurance.

.
3. Method

The evaluation included 18 different static source
code analyzers. Because of resource constraints only 6
were evaluated in house. There are, however,
published comparative evaluations, and these were
used as a supplement. The criteria chosen for the
internal evaluations are common with most of the
published evaluations.

To account for differences in standards across the
different reviewers, results were normalized. Tools
evaluated by more than a single source provided scale
calibration points across the external evaluation
sources [1-5] using the internal evaluations as the
benchmark.

Some vendors do not provide evaluation licenses.
As a consequence, some of the in-house evaluations
were the result of vendor-performed demonstrations.
Some were the result of web-based demonstrations
hosted on the vendor’s web site. In these cases vendors
provided some of the performance data, but some of it
resulted from interpolating available results (e.g., if the
tool provided buffer overflow detection for a standard
data type, then with confirmation from the vendor, it
was assumed the tool provided buffer overflow
detection for all standard data types).

4. Evaluation Criteria and Methodology

Based on input from developers, engineering
managers, and program managers, the criteria used for
the evaluation were analysis accuracy, remediation
advice, false positive suppression, rule extension, user
interface, and ease of integration with an Integrated
Development Environment (IDE - e.g., Eclipse).
Analysis accuracy consisted of the detection rate for
true positive (correctly detected errors), true negative
(correctly detected absence of errors), false positive
(incorrectly detected errors), and false negative
(incorrectly detected absence of errors). Remediation
advice is the information the tool provides when
detecting an error – information that allows the
developer to better understand the error and better
understand how to eliminate it. False positive
suppression is a measure of how easy it is to suppress
redundant error, warning, and information messages or
the extent to which a tool allows suppression. Rule
extension is a measure of the extent to which the tool
allows for the addition of error or conformance checks

and how easily this is done. The user interface is a
measure of how easy it was to learn to use the tool and
how easy it was to perform common tasks. Price was
not included, primarily because vendor prices vary
greatly depending on quantity, other purchased
products, and marketing strategy.

The evaluation criteria were weighted. Potential
users and their management felt analysis accuracy was
the most important tool attribute so its weight was
arbitrarily set at twice that of both remediation advice
and false-positive suppression, and 3 times that of IDE
integration and user interface. Based on developer
input, the importance of rule extensibility was
arbitrarily set at half that of IDE integration and user
interface. Internal evaluations used a 3 point scale,
where 3 was best and 0 indicated the absence of a
capability. The published comparative evaluations
each used a different scoring mechanism. Their results
were normalized.

To the extent vendors provided evaluation licenses,
analysis accuracy was measured using a small subset
of the NIST SAMATE Reference Dataset (SRD) test
cases [10]. Additional test cases were created to fill
gaps (e.g., tests for infinite loops). Evaluations were
limited to 6 general error categories: looping, numeric,
pointer, range, resource management (e.g.,
initialization), and type. In all, 90 test cases were used.
Both the downloaded test cases as well as those written
for this evaluation were written in C to run on a Wintel
platform against the MinGW 3.1.0 gcc compiler.

Some vendors provided in-house demonstrations
but were reluctant to analyze small code segments,
preferring to demonstrate effectiveness against large
systems or subsystems (i.e., > 500KSLOC). In those
cases the evaluation team interviewed technical staff
from the tool supplier to determine capability against
specific error classes.

The group at MIT and MIT’s Lincoln Lab
evaluated 5 tools against a set of test cases that were
subsequently submitted to the NIST for inclusion in
the SRD. The DRDC evaluated tools against test cases
that also were submitted to the NIST for inclusion in
the SRD. In the case of the other published
evaluations, the basis for the accuracy evaluation is
unknown.

5. Results

The results of the evaluation are these: For C and
C++, some static analyzers are cost effective; none of
those evaluated could be qualified as a replacement for
manual activities like source code reviews (and may
even be detrimental as a supplement to them) or for

structural coverage testing; but if used prudently, some
can reduce the cost of implementation (code, test).

In general all evaluated tools displayed significant
deficiencies in detecting source code errors against
some of the error categories. Determining false
negative thresholds of acceptability against the
different error categories and then determining each
tool’s areas of acceptable strength and unacceptable
weakness is a logical next step, but was outside the
scope of this effort.

On the basis of performance against the criteria,
tools fell into two tiers. Only two of the evaluated tools
had good scores for analysis accuracy, user interface,
remediation advice, and false positive suppression. In
both cases rule extension/addition required separate
products. One performed poorly against arithmetic,
type transformation, and loop errors. Both scaled well
from very small segments of code to very large
systems. All things considered (e.g., installation,
learning curve) both are most effectively used for
system or subsystem error checking within the context
of a daily/nightly automatic build process, as opposed
to evaluating small daily code increments in isolation.
Both tightly coupled error detection with change
tracking. The change tracking feature could have a
significant near-term impact on productivity (non-
trivial learning curve) if integrated into an existing
formal development process.

In the second tier, several had scores that ranged
from very good to poor for analysis accuracy,
remediation advice, rule extension, and false positive
suppression. Several in this tier had good scores for
error detection but poor scores for false positive rate
and a cumbersome false positive suppression
capability. Many in this tier did not scale well (up or
down) – e.g., some of the evaluated versions crashed
while analyzing large systems. Some had adequate
accuracy and remediation advice once the large
number of false positive messages was suppressed.
Error analysis coverage is narrow compared to the two
first tier tools – e.g., will not detect such C errors as:

char a[15];
strcpy(a, "0123456789abcdef");

or
 int i = 2147483647;
 i = i * 65536;

or
 int i = 0;
 while (i < 10)
 {
 i = i - 1;
 }

Nearly all vendors of error detection tools also
provide conformance checking capabilities, usually via
separate licensing. Those that provided licenses for this
evaluation also provided rule-set extension
capabilities. Although conformance checking
comparisons were not part of this evaluation, in a brief
review, most had adequate capability. Some had
significant advantages over others - e.g., out-of-the-
box rule set (MISRA C rule set already installed) and
ease of extension and modification.

Finally, static analyzers that perform inter-
procedural analysis provide capability not addressed
by manual code reviews, which typically only address
individual code units (e.g. single compilation units).
The ability to detect errors resulting from the impact of
cascading function and procedure calls is not
realistically available to manual analysis but clearly
advantageous, identifying errors that are usually
detected during system test or operational test. It was
convenient to run this kind of static analyzer as a part
of the automatic system build.

6. Conclusions

Static analysis can cost-effectively reduce rework
(detecting defects before they escape into downstream
development phases or into delivered products) but
currently cannot replace manual source code reviews.
In general, they need better error detection accuracy
and broader coverage across error classes.

6.1 Cost Effective Reduction of Rework

Some static analyzers – those with broad coverage

and high accuracy – are simple enough to use and are
accurate enough that downstream cost avoidance
exceeds cost of use (license cost, cost of false positive
resolution and suppression, etc.). Tools in this category
detect some source code errors faster and more
effectively than manual reviews. Development teams
can use them informally, on a daily/nightly basis,
throughout the implementation cycle (code and
development test) when integrated into an automated
build process, reducing cost by reducing the quantity
of errors that escape into development testing, and by
reducing the number of iterations through each test
phase (e.g., unit, integration, functional, performance).

Static analyzers with more limited coverage and
lower accuracy, internal demonstration of cost
effectiveness is difficult. No one static analyzer was
effective against very many of the error classes
identified by the Common Weakness Enumeration [7].
In addition, within some error classes where detection

capability existed, many demonstrated a high false
negative rate against the limited number of test cases.
Many with a low false negative rate had a high false
positive rate. Distinguishing between true and false
detections and suppressing the false positives was a
significant effort. It was not clear that the less than
optimal reduction in debugging and rework was
enough to offset the increase in effort from false-
positive analysis and suppression.

6.2 Reducing Formal Compliance Cost –
Automated vs. Manual Analysis

Of the 18 static analysis tools evaluated, none was

designed to detect all the kinds of errors manual
analysis detects. Therefore, none could replace manual
analysis in a development environment regulated by an
industry standard like DO-178B.

Automation of a manual process like the code
review would require qualification of the static
analyzer: documented demonstration of compliance
with requirements within the target operating
environment to confirm the tool is at least as effective
as the manual process it would replace (e.g., RTCA
DO-178B, paragraph 12.2.2).

Currently, this would be difficult given the
evolving status of the existing government and
industry resources, and the absence of performance
requirements. If an industry standard defined error
categories (e.g., Common Weakness Enumeration),
defined tests by which static analyzers could be
evaluated against those categories (e.g., SAMATE
Reference Dataset), and defined performance
requirements against those tests (e.g., less than 1%
false negative rate), compliant static analyzers might
be able to eliminate manual review within targeted
categories. Manual reviews would still be required, but
detection of qualified error categories could be
eliminated from them.

It is unclear that the size of the current safety-
critical market is large enough to motivate the tool
developer’s investment in qualification. Over time,
however, resolving the cost of tool qualification could
follow the same path as code coverage tools, where the
tool developer now sells the deliverable qualification
package or sells a qualification kit from which the user
produces the qualification package. It is also possible,
if individual tools achieve broad enough error
coverage and high enough accuracy, that a user (or
possibly a user consortium) may be motivated to
qualify it. Qualification by a government-authorized
lab could also become cost effective for either the tool
developer or the tool user.

6.3 Potential for Increasing Rework Cost

There is resistance to using existing static analyzers

as a supplement to manual source code reviews [6].
The National Academy of Sciences established the
Committee on Certifiably Dependable Software
Systems to determine the current state of certification
in the dependable systems domain, with the goal of
recommending areas for improvement. Its interim
report contained a caution against tools that automated
software development in the safety-critical context:

“…processes such as those recommended in DO-
178B have collateral impact, because even though
they fail to address many important aspects of a
critical development, they force attention to detail
and self-reflection on the part of engineers, which
results in the discovery and elimination of flaws
beyond the purview of the process itself. Increasing
automation and over-reliance on tools may actually
jeopardize such collateral impact.”[6]

Given that all evaluated tools exhibited major

failures against some error categories, reducing the
effort that goes into the manual review would lead to
an increase in errors found during the test phase and an
increase in errors found in delivered products. For that
reason, many of the FAA’s Designated Engineering
Representatives are reluctant to approve the use of a
static analyzer even as a supplement to manual
analysis.

Until tools exhibit broader coverage and greater
accuracy, their use for any aspect of the formal source
code review process (RTCA DO-178B, paragraph
6.3.4.f) is probably premature.

6.4 Automating Conformance Checking

If conformance checking is the primary concern,
and error detection a secondary issue, any of the
evaluated tools would perform adequately without
additional functional or performance capability. Some
are easier to use out of the box than others, but all
significantly reduce the effort of achieving
conformance with a coding standard.

6.5 Automating Non-Critical Error Detection

In environments where cost is the driving factor and
there are no tool qualification issues (e.g., there is no
false negative rate requirement), any of the low-end
tools could be used without additional functional or

performance capability. They can be simple to acquire
and simple to install, with an intuitive interface. If it is
open-source or inexpensive (e.g., less than $500
acquisition fee per user with a 20% per year recurring
fee) and easy to use, demonstrating that it catches
some of the common implementation errors that
typically escape into the integration and test phases
(e.g., uninitialized stack variable, buffer overflow) may
be enough to justify usage cost (false positive
suppression, learning curve, modification of standard
development process, etc.).
In a development environment where there is no
previous experience with static analysis, using a low-
end tool to demonstrate the cost effectiveness of the
technology could be a means of subsequently
justifying the upgrade to a more expensive and more
capable high-end tool.

7. References

[1] Zitser, Lippman, Leek, “Testing Static Analysis Tools
Using Exploitable Buffer Overflows From Open Source
Code”, ACM Foundations of Software Engineering 12, 2004,
available at
http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Zitser.pdf
[2] Kratkiewicz, Lippmann, “A Taxonomy of Buffer
Overflows for Evaluating Static and Dynamic Software
Testing Tools”, Proceedings of Workshop on Software
Security Assurance Tools, Techniques, and Metrics, National
Institute of Standards and Technology, February 2006, pp.
44-51
[3] Michaud, et al, “Verification Tools for Software Security
Bugs”, Proceedings of the Static Analysis Summit, National
Institute of Standards and Technology, July 2006, available
at http://samate.nist.gov/docs/
[4] Newsham, Chess, “ABM: A Prototype for Benchmarking
Source Code Analyzers”, Proceedings of Workshop on
Software Security Assurance Tools, Techniques, and Metrics,
National Institute of Standards and Technology, February
2006, pp. 52-59
[5] Forristal, “Review: Source-Code Assessment Tools Kill
Bugs Dead”, Secure Enterprise, December 1, 2005,
http://www.ouncelabs.com/secure_enterprise.html
[6] Committee on Certifiably Dependable Software Systems,
Software Certification and Dependability, The National
Academies Press, 2004, pp. 11-12
[7] Common Weakness Enumeration,
http://cve.mitre.org/cwe/index.html#graphical
[8] Chelf, Measuring Software Quality: A Study Of Open
Source Software, posted March 2006 at
http://www.coverity.com/library/pdf/open_source_quality_re
port.pdf
[9] Software Considerations in Airborne Systems and
Equipment Certification RTCA DO-178B, December 1, 1992
[10] SAMATE Reference Dataset, National Institute of
Standards and Technology, http://samate.nist.gov/SRD/

http://www.ll.mit.edu/IST/pubs/04_TestingStatic_Zitser.pdf
http://samate.nist.gov/docs/
http://www.ouncelabs.com/secure_enterprise.html
http://cve.mitre.org/cwe/index.html#graphical
http://www.coverity.com/library/pdf/open_source_quality_report.pdf
http://www.coverity.com/library/pdf/open_source_quality_report.pdf
http://samate.nist.gov/SRD/

Common Weakness Enumeration (CWE) Status Update
Robert A. Martin
MITRE Corporation
202 Burlington Road
Bedford, MA 01730

1-781-271-3001

ramartin@mitre.org

Sean Barnum
Cigital, Inc.

21351 Ridgetop Circle, Suite 400
Sterling, VA 20166

1-703-404-5762

sbarnum@cigital.com

ABSTRACT
This paper is a status update on the Common Weakness Enu-
meration (CWE) initiative [1], one of the efforts focused on
improving the utility and effectiveness of code-based security
assessment technology. As hoped, the CWE initiative has helped
to dramatically accelerate the use of tool-based assurance argu-
ments in reviewing software systems for security issues and
invigorated the investigation of code implementation, design, and
architecture issues with automation.

1. INTRODUCTION
As the threat from attacks against organizations shifts from the
network, operating system, and large institutional applications to
individual applications of all types, the need for assurance that
each of the software products we acquire or develop are free of
known types of security weaknesses has increased. High quality
tools and services for finding security weaknesses in code are
maturing but still address only a portion of the suspect areas. The
question of which tool/service is appropriate/better for a particular
job is hard to answer given the lack of structure and definition in
the software product assessment industry.

As reported last year [2], there are several ongoing efforts work-
ing to resolve some of these shortcomings, including the Depart-
ment of Homeland Security (DHS) National Cyber Security Divi-
sion (NCSD) sponsored Software Assurance Metrics and Tool
Evaluation (SAMATE) project [3] being led by the National In-
stitute of Standards and Technology (NIST) and the Object Man-
agement Group (OMG) Software Assurance (SwA) Special Inter-
est Group (SIG) [4].

Since that time, there has been related work started by the Other
Working Group on Vulnerabilities (OWG-V) within the ISO/IEC
Joint Technical Committee on Information Technology (JTC1)
SubCommittee on Programming Languages (SC22) [5] as well as
the new efforts at the SANS Institute to develop a national Secure
Programming Skills Assessment (SPSA) examination [6] to help
identify programmers knowledgeable in avoiding and correcting
common software programming weaknesses, among others.

While all of these efforts continue to proceed within their stated
goals and envisioned contributions, they all depend on the exis-
tence of common description of the underlying security weak-
nesses that can lead to exploitable vulnerabilities in software.
Without such a common description, these efforts cannot move
forward in a meaningful fashion or be aligned and integrated with
each other to provide strategic value.

As stated last year, MITRE, with support from Cigital, Inc., is
leading a large community of partners from industry, academia,
and government to develop, review, use, and support a common
weaknesses dictionary/encyclopedia that can be used by those

looking for weaknesses in code, design, or architecture, those
trying to develop secure application, as well as those teaching and
training software developers about the code, design, or
architecture weaknesses that they should avoid due to the security
problems they can have on applications, systems, and networks.

This paper will outline the various accomplishments, avenues of
investigation, and new activities being pursued within the CWE
initiative.

2. COMMUNITY
Over the last year 6 additional organizations have agreed to con-
tribute their intellectual property to the CWE initiative. Done
under Non-Disclosure Agreements with MITRE which allow the
merged collection of their individual contributions to be publicly
shared in the CWE List, AppSIC, Grammatech, Palamida, Secu-
rity Innovation, SofCheck, and SureLogic have joined the other
13 organizations that have formally agreed to contribute.

In addition to these sources, the CWE Community [7], numbering
46 organizations, is now also able to leverage the work, ideas, and
contributions of researchers at Apple, Aspect Security, Booz
Allen Hamilton, CERIAS/Purdue University, Codescan Labs,
James Madison University, McAfee/Foundstone, Object Man-
agement Group, PolySpace Technologies, SANS Institute, and
Semantic Designs, as well as any other interested parties that wish
to come forward and contribute.

Over the next year we anticipate the formation of a formal CWE
Editorial Board to help manage the evolution of the CWE content.

3. UPDATES
There were four drafts of CWE posted over the last year. With
Drafts 4 and 5, CWE reached 550 and 599 items respectively.
Draft 4 saw the introduction of the CWE ID field and Draft 5
included the introduction of predictable addresses for each CWE
based on the CWE ID. During this timeframe the CWE web site
expanded to include a “News” section, an “Upcoming Events”
section, and a “Status Report” section. Draft 5 included additional
details on node relations and alternate terms. With Draft 5 the
CWE List was provided in several formats on the web site.
Eventually this will be expanded upon to provide style-sheet
driven views of the same underlying CWE XML content.

Draft 6 of CWE included a new category called “Deprecated” to
allow duplicate CWEs to be removed by reassigning them to that
category, which has a CWE ID but like the items it will hold, it is
not part of totals for CWE. So there are 627 CWE IDs assigned
with Draft 6, but two of the older CWEs have been moved to the
new deprecated category, which also doesn’t count in the totals
for CWE so there are 624 unique weakness concepts, including

structuring concepts, in CWE Draft 6. The first formal draft of a
schema for the core information that each CWE will have was
finalized with Draft 6, covering the five groupings of information
about each CWE, including “Identification”, “Descriptive”,
“Scoping & Delimiting”, “Prescriptive”, and “Enhancing” types
of information.

Draft 7 of CWE represents the first recipient of material from the
CWE Scrub, described in section 5 of this paper. The main size
type changes to CWE included the insertion of 7 new nodes to
support grouping portions of CWE into additional Views and one
CWE was deprecated. Further details of the changes in Draft 7
are included in the Scrubbing section of this paper.

4. VULNERABILITY THEORY
In parallel with the CWE content creation and as part of the Scrub
activities, there has been considerable progress in documenting
thoughts about the mechanics of vulnerabilities and how
weaknesses, attacks, and environmental conditions combine to
create exploitable vulnerabilities in software systems. Evolving
the initial work on this topic, covered in the Preliminary List of
Vulnerability Examples for Researchers (PLOVER) effort [8] in
2005, it now includes the results of working with great variety of
issues covered in CWE. In July 2007, the “Introduction to
Vulnerability Theory” [9] was published along with a companion
document “Structured CWE Descriptions” [9]. The latter, using
terminology defined in Vulnerability Theory, provides a first
attempt to develop consistent descriptions of a broad and diverse
set of over 30 CWEs. Given the many sources of information that
CWE has combined it is important that we carefully comb through
CWE to clarify and harmonize the use of terms and concepts.
Another use of the terminology in Vulnerability Theory has been
in annotating exemplar code. While common practice, the use of
code snippets to show incorrect coding constructs is often hard to
comprehend. The labeling of the individual artifacts within the
code that are involved in a weakness shows great promise. For
example, Figure 1 shows a code snippet that can be used to
demonstrate three different types of CWEs, Cross-Site Scripting
(79), Directory Traversal (22), and Unbounded Transfer (‘classic
overflow’) (120).

Figure 1: Code Example for CWEs 79, 22, and 120.

But without additional guidance it is difficult to identify the actual
problem areas. Figure 2, specifying the line numbers involved in
the different Vulnerability Theory concepts makes the discussion
more precise by labeling the artifact concepts.

Figure 2: Vulnerability Theory Artifact Labels for Code Example

5. SCRUBBING
The latest update to CWE included materials resulting from the
“Scrubbing of CWE”. As mentioned earlier, CWE has material
from many sources and covers a very wide range of concepts from
a variety of perspectives and with varying levels of abstraction.
Additionally, the software security industry has a long tradition of
mixing together discussions of weaknesses, attacks, and results of
exploited vulnerabilities that need to be addressed. Confronting
these issues before CWE gets any larger is the purpose of the
“CWE scrub”.

Resolving the mixed language issues blending description of
weaknesses and attacks will involve two primary actions. The first
is a rewriting of attack-centric language to clearly describe the
underlying weakness that the attack is targeting. The second ac-
tion will be an integration of related attack pattern references into
the CWE schema and content such that the CWE can be effec-
tively aligned to the Common Attack Pattern Enumeration and
Classification (CAPEC) [10]. This part of the scrub effort is still
in progress but it will not only improve clarity and consistency of
the CWE weaknesses descriptions but will also add significant
value to them by placing them within the context of how they are
likely to be attacked.

Draft 7 includes over 800 major and minor changes due to the
scrub. Examples of the changes include consistent naming
conventions and spell checking at one end and revisiting the
descriptions, relationships, context notes, and examples on the
other. A detailed delta report capturing the change between Draft
6 and Draft 7 will be available on the CWE web site.

In addition to the above items, our study of the concepts captured
in CWE has led us to identifying additional ways of capturing and
describing the mechanics of the weaknesses, as described in Sec-
tion 4. Two examples of concepts that CWE needs to be able to
capture include series of weaknesses and simultaneous weak-
nesses. Figure 3 illustrates a series of weaknesses could be
something like how an incorrect range check allows an integer
overflow to occur which then leads to insufficient memory
allocation which allows a heap overflow that could lead to code
execution or a memory corruption induced crash. A simultaneous
set of weaknesses could be an incorrect input cleansing, along
with a guessable file name/path, and incorrect permissions that
allows an attacker to download a sensitive file. CWE needs to be

able to capture both of these types of situations within the XML
data about the different weaknesses.

Figure 3: A Weakness Series

Another area that needs to be addressed in the CWE Scrub is the
levels of abstraction CWE will support. In Draft 6 there were 466
CWEs that have no child nodes and are thought to be lowest-level
concepts of a weakness (referred to as a vulnerability type).
However, there are 44 other nodes that many consider to be low-
est-level vulnerability types yet they have child nodes in CWE.
Some of the lowest level concept child nodes are things that a
static code analysis would not be able to recognize yet a dynamic
code testing approach would. Additionally it would appear that
these low level child nodes would be helpful concepts for
developers, testers, and project managers to understand, make use
of, and work with. So maybe the different uses of CWE should be
supported by an ability to project parts of CWE and CWE needs a
“sub-type” concept for these items? Similar issues surround the
categories that CWE uses to explain hierarchical relationships
amongst CWE items. There are currently 105 categories with
child nodes associated to them. However there are another 9
categories that have no child nodes currently. Linking these
categories to the appropriate child nodes or creating new child
nodes is another topic of the CWE scrub.

To support the scrub activity and the ongoing review and
enhancement of CWE a publicly archived CWE-RESEARCH-
LIST has been set up and appropriate software security
researchers were invited to sign-up. At the writing of this paper
there are over a hundred subscribers already but everyone
interested in the direction and evolution of CWE is encouraged to
join the list and participate. Similarly a Research area has been
established on the CWE web site with background information
about the current and evolving ideas for scrubbing CWE as well
as Use Cases and Stakeholder analysis.

6. COMPATIBILITY & EFFECTIVENESS
About a month after Draft 5 of CWE was posted the CWE Com-
patibility and Effectiveness Program was announced. CWE
Compatibility is focused on the correct use of CWE Ids by tools
and services while CWE Effectiveness is focused on determining
which tools and services are effective in finding specific CWEs.
The CWE Compatibility and Effectiveness Program [11] provides
for a product or service to be reviewed and registered as officially
"CWE-Compatible" and "CWE-Effective," thereby assisting or-
ganizations in their selection and evaluation of tools and/or serv-
ices for assessing their acquired software for known types of
weaknesses and flaws, for learning about the various weaknesses
and their possible impact, or to obtain training and education
about these issues. Detailed requirements defining CWE
Compatibility and Effectiveness can be found on the CWE web
site.

Currently, 12 organizations have declared that a total of 22 prod-
ucts & services are or will be CWE Compatible. This includes
capabilities from Fortify Software, GrammaTech Inc., Armorize
Technologies Inc., Klocwork Inc., CERIAS/Purdue University,
Cigital Inc., SofCheck Inc., HP/SPI Dynamics, Ounce Labs,
SANS Institute, Veracode Inc., and IBM/Watchfire. For a current
list of CWE Compatibility see the CWE web site.

7. OUTREACH AND EDUCATION
A key component of any standardization effort that will be
adopted and used by organizations is educating and informing all
types of people about the effort, its motivation, plans, and po-
tential impacts. Otherwise the standard may become an academic
exercise that was never challenged to deal with practical usage
cases by tool developers or users. The feedback from knowledge-
able sources and the criticism/suggestions from those deeply
involved and/or invested in the technologies, problems, or
processes involved in an area being standardized is critical to
identifying and rectifying any gaps or disconnects.

For the CWE initiative the Software Assurance Working Group
meetings and Forums, co-sponsored by the Department of De-
fense (DoD) and the DHS, have been a major source of this type
of interaction. Additionally, CWE has been presented in talks and
discussions at conferences and workshops like the Tactical IA
Conference, the InfoSecWorld Conference, the RSA Conference,
the OMG Software Assurance Workshop, the main Black Hat
Conference and the Black Hat D.C. Conference, the Defense In-
telligence Agency Software Assurance Workshop, the GFIRST
Conference, the Software and Systems Technology Conference,
along with the IA in the Pacific Conference, and the AusCERT
2007 Conference.

Additionally, a paper on CWE was published for Black Hat D.C.
[12] and an article was written for CrossTalk Magazine, the Jour-
nal of Defense Software Engineering [13].

8. CURRENT THOUGHTS ON IMPACT
AND TRANSITION OPPORTUNITIES
As stated in the original concept paper that laid out the case for
developing the CWE List [14], the completion of this effort will
yield consequences of three types: direct impact and value, align-
ment with and support of other existing efforts, and enabling of
new follow-on efforts to provide value that is not currently being
pursued. Steady progress is being made to address and leverage
each of the opportunities identified in that document.

Additionally, there have been three areas where CWE has been
adopted fairly early that have great promise for spreading knowl-
edge of CWE very quickly. The first is the use of CWE as a stan-
dard reference in the Open Web Application Security Project
(OWASP) Top Ten Most Critical Web Application Security Vul-
nerabilities 2007 [15], the second is the creation and distribution
by the SANS Institute, of a SANS CWE Poster, shown in draft
form in Figure 4, and the third is the inclusion of CWE identifiers
in the National Vulnerability Database (NVD) [16], shown in
Figure 5, as refinement of the Vulnerability Type information they
provide for publicly known vulnerabilities in packaged software.

Figure 4: Draft of SANS CWE Poster.

Figure 5: NVD Use Of CWE.

Leveraging of the OMG technologies to articulate formal, ma-
chine parsable definitions of the CWEs to support analysis of
applications within the OMG standards-based tools and models is
continuing through an effort to create formalized CWE defini-
tions. This effort, in conjunction with OMG standards-based
modeling and automated code generation from models efforts and
the NIST SAMATE Reference Dataset repositories creation con-
tinue to move forward and should create some very promising
results. Any tool/service capability measurement framework that
uses the tests provided by the SAMATE Reference Dataset will be
able to leverage the common weakness dictionary as the core
layer of the framework.

Through all of these activities, CWE continues to help shape and
mature the code security assessment industry, and dramatically
accelerate the use and utility of these capabilities for organizations
and the software systems they acquire, develop, and use.

9. ACKNOWLEDGMENTS
The work contained in this paper was funded by DHS NCSD.

10. REFERENCES
[1] “The Common Weakness Enumeration (CWE) Initiative”,

MITRE Corporation, (http://cwe.mitre.org/).

[2] Martin, R., Barnum, S., “A Status Update: The Common
Weaknesses Enumeration”. Proceedings of the Static Analy-
sis Summit, NIST Special Publication 500-262, July 2006.

[3] “The Software Assurance Metrics and Tool Evaluation
(SAMATE) project”, National Institute of Science and Tech-
nology (NIST), (http://samate.nist.gov).

[4] “The OMG Software Assurance (SwA) Special Interest
Group”, (http://swa.omg.org).

[5] “ISO/IEC JTC 1/SC22/ Other Working Group: Vulnerabili-
ties”, ISO/IEC JTC 1/SC 22 Secretariat,
(http://www.aitcnet.org/isai/).

[6] “SANS Software Security Institute”, SANS Institute,
(http://www.sans-ssi.org/).

[7] “The Common Weakness Enumeration (CWE) Community”,
MITRE Corporation, (http://cwe.mitre.org/community/).

[8] “The Preliminary List Of Vulnerability Examples for Re-
searchers (PLOVER)”, MITRE Corporation,
(http://cve.mitre.org/docs/plover/).

[9] “Introduction to Vulnerability Theory” and “Structured CWE
Descriptions Documents”, MITRE Corporation,
(http://cwe.mitre.org/about/documents.html).

[10] The Common Attack Pattern Enumeration and Classification
(CAPEC) Initiative”, Cigital, Inc. and MITRE Corporation,
(http://capec.mitre.org/).

[11] “The Common Weakness Enumeration (CWE) Compatibility
Declarations”, MITRE Corporation,
(http://cwe.mitre.org/compatible/organizations.html).

[12] Martin, R. A., Christey, S., “Being Explicit About Software
Weaknesses”. “Black Hat DC Training 2007, ” February,
2007 Arlington, VA.

[13] Martin, R. A., “Being Explicit About Security Weaknesses”.
“CrossTalk: The Journal of Defense Software Engineering”,
(http://www.stsc.hill.af.mil/CrossTalk/2007/03/), March
2007.

[14] Martin, R. A., Christey, S., Jarzombek, J., “The Case for
Common Flaw Enumeration”. “NIST Workshop on Software
Security Assurance Tools, Techniques, and Metrics”, No-
vember, 2005 Long Beach, CA.

[15] “OWASP Top Ten Project 2007”, Open Web Application
Security Project, (http://www.owasp.org/index.php/
Top_10_2007).

[16] “National Vulnerability Database (NVD) ”, National Institute
of Science and Technology (NIST),
(http://nvd.nist.gov/nvd.cfm).

A Practical Approach to Formal Software Verification by
Static Analysis∗

[Extended Abstract]

Arnaud Venet
Kestrel Technology LLC

4984 El Camino Real #230
Los Altos, CA 94022

arnaud@kestreltechnology.com

ABSTRACT
Static analysis by Abstract Interpretation is a promising way
for conducting formal verification of large software appli-
cations. In spite of recent successes in the verification of
aerospace codes, this approach has limited industrial appli-
cability due to the level of expertise required to engineer
static analyzers. In this paper we investigate a pragmatic
approach that consists of focusing on the most critical com-
ponents of the application first. In this approach the user
provides a description of the usage of functionalities in the
critical component via a simple specification language, which
is used to drive a fully automated static analysis engine. We
present experimental results of the application of this ap-
proach to the verification of absence of buffer overflows in a
critical library of the OpenSSH distribution.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical
Verification

Keywords
Static analysis, abstract interpretation, formal verification,
buffer overflow

1. INTRODUCTION
The term static analysis is most often employed for denoting
the detection of software errors or vulnerabilities by auto-
matic inspection of source code. Static analysis tools in this
category–like those commercialized by Coverity [1] or Kloc-
work [2] to name a few–have become increasingly popular
among developers and enjoy widespread use in the software
industry. However, this form of static analysis can only point
to defects in the code but does not guarantee that all have

∗This work was funded by the OSD SBIR contract FA8750-
06-C-0146.

been found, even if only a single class of defects is considered,
like buffer overflows. A static analysis technology called Ab-
stract Interpretation [8, 9] can make stronger claims for cer-
tain classes of software defects. The validity of such claims is
backed by a rigorous mathematical theory underpinning the
implementation of the static analyzer. Decidability issues
are avoided by allowing the analyzer to give indeterminate
results. These indeterminates are mere false positive most of
the time but may also point to a real problem. The effective-
ness of a static analyzer based on Abstract Interpretation is
measured by its precision i.e., the ratio of false positives in
the analyzer’s output. A static analyzer that does not yield
any false positive provides high assurance that the code is
free of a certain class of defects.

Using static analysis to perform formal software verification
sounds attractive at first: there is no need to build a model
of the application, the verification process is fully automated
and is conducted on the very code that will run on the target
platform. However, the reality is somewhat disappointing.
In order to achieve formal verification, the number of false
positives produced by the analyzer must be zero or at least
very small. Reaching this level of precision on real software
systems requires (1) a substantial amount of work tuning
the analysis engine, and (2) an excellent knowledge of the
context in which the application operates (input parameters,
sensor data, interruptions, etc.). For example, the design of
the ASTREE static analyzer [5, 10], which has been used to
verify the correctness of floating-point arithmetic in the elec-
tric flight control code of the Airbus A380, monopolized the
attention of six world-class experts in Abstract Interpreta-
tion during a couple of years. Getting rid of all false positives
required devising highly sophisticated algorithms to handle
the unique characteristics of this code e.g., a domain of ellip-
soids to analyze linear digital filters [5] and a representation
of inequalities for floating-point variables [12].

However, some false positives cannot be removed by just im-
proving the analysis engine, since they require information
on the operating environment of the program that is not
present in the code. For example, in our past experience we
had to analyze the attitude control system of a satellite. The
analyzer that we were using performed well but turned up
a number of false positives that resisted all our attempts to
improve the precision of the algorithms. A careful investiga-
tion of the origin of these false positives revealed that they
were all caused by the lack of information on the variable

Application Module

Interface

DSL

Module

Interface

Operational
environment

Figure 1: Modeling the usage of the module through
its interface.

containing the altitude of the satellite. Simply adding the
assertion that the altitude is always positive was sufficient
to remove all remaining false positives.

This approach requires a close interaction between a group
of experts in Abstract Interpretation and a group of experts
of the application to be verified. It is difficult to imagine it
being applied to a large variety of codes. The major bottle-
neck is the availability of experts in Abstract Interpretation
who are willing to spend time on such projects. Although
it is possible to build a general-purpose static analysis tool
that exhibits good precision and performance in average–
PolySpace Verifier is an example [4]–the number of indeter-
minates will still be too high for the purpose of high assur-
ance. In this paper, we report on ongoing work for mak-
ing Abstract Interpretation-based analyzers easier to use in
practice without sacrificing too much precision. We are in-
vestigating a divide-and-conquer approach that allows ap-
plication experts to use a generic static analysis engines on
the most critical components of a software application. Our
approach is described in Sect. 2. In Sect. 3 we describe an
application of this approach to the verification of absence of
buffer overflows in a critical library of the OpenSSH distri-
bution.

2. DIVIDE-AND-CONQUER APPROACH
Abstract Interpretation is a well defined theory, which pro-
vides a systematic methodology for constructing sound static
analyzers [7]. Static analyzers obtained by a straight appli-
cation of the theoretical framework will not scale to hun-
dreds of thousands of lines of code. Engineering scalable and
sound static analyzers is extremely challenging and requires
specializing the algorithms for the application or familiy of
applications considered [13, 10]. However, if we limit the
size of the programs to be analyzed to a few thousand lines,
then it is possible to build a fairly general static analyzer
that can handle a broad spectrum of programs for a given
property (array-bound compliance, floating-point overflows,
etc.) with high precision. We propose to apply such ana-
lyzers to small critical components of software applications.
This approach is justified by the empirical observation that
many large applications consist of a collection of smaller
components. For example, in our previous work on NASA
flight-control software of Mars missions [13, 6] we observed
that the Mars Exploration Rovers mission control software
is about half a million lines of code. However, it is made
of over one hundred threads, each one acting as an indepen-
dent unit and controlling either a particular instrument (like

the high-gain antenna) or a phase in the mission (like entry-
descent-landing). The monolithic structure of the electric
flight control code of the A380, where interdependent op-
erations may spread over hundreds of thousand lines of, is
unique and mostly due to the fact that the code is automat-
ically generated from higher level specifications.

This approach is viable if an application expert with a lim-
ited grasp of static analysis can successfully use an analyzer
on a module of the application. As we previously observed,
the operational environment of the applications is important
for precision. Our approach adds another dimension to that
problem, since we are now analyzing a module and the in-
teractions between the module and the rest of the code have
to be modeled. We assume that the module comes with
a clearly defined interface. This is not an unrealistic as-
sumption. For example, all threads in the Mars Exploration
Rovers mission control software communicate using a com-
mon mechanism based on message queues, with a carefully
specified format of messages. We propose to use a domain
specific language (DSL) to model the interaction between
the module and therest of the code through its interface
as depicted in Fig. 1. The static analyzer takes as inputs
the code of the module together with the model of its en-
vironment. The DSL provides a precise formal definition of
the context in which the module is executed in a form that
is easily intelligible by the user. We are currently working
on a DSL for a family of representative program properties
verifiable by static analysis.

We have chosen the OpenSSH 4.3 application bundle [3] as
a realistic application for demonstrating the feasibility of
our approach. The applications in OpenSSH use a com-
mon buffer library for the internal storage of data transmit-
ted across the networks. This library implements dynamic
buffers that transparently grow in order to fit the data stored
therein. The buffer library is a critical component of the ap-
plication bundle that is implemented using sophisticated al-
gorithms. A buffer in OpenSSH is implemented in an object-
oriented style, using a structure that contains information
about the size of the buffer and the space available. The
buffer structure is defined as follows:

typedef struct {
u_char *buf; /* Buffer for data. */
u_int alloc; /* Number of bytes allocated for data. */
u_int offset; /* Offset of first byte containing data.*/
u_int end; /* Offset of last byte containing data. */

} Buffer;

The basic interface of the buffer library contains the follow-
ing functions:

void buffer_init(Buffer *);
void buffer_clear(Buffer *);
void buffer_free(Buffer *);

u_int buffer_len(Buffer *);
void *buffer_ptr(Buffer *);

void buffer_append(Buffer *, const void *, u_int);
void *buffer_append_space(Buffer *, u_int);

buffer_init(&buffer)

buffer_free(&buffer)

buffer_consume(&buffer, len)
req: len >= 0

buffer_append(&buffer, &data, len)
req: 0 <= len <= size(data)

Figure 2: Modeling the usage of the module through
its interface.

void buffer_get(Buffer *, void *, u_int);

void buffer_consume(Buffer *, u_int);
void buffer_consume_end(Buffer *, u_int);

void buffer_dump(Buffer *);

int buffer_get_ret(Buffer *, void *, u_int);
int buffer_consume_ret(Buffer *, u_int);
int buffer_consume_end_ret(Buffer *, u_int);

As previously described the user must supply a model of the
interactions between the module and the rest of the system
in order to enable the separate analysis of the module. The
DSL that we have designed so far for modelling operational
environments is based on state machines describing the or-
der in which the functions in the interface are used, together
with constraints on the arguments of the functions. Some
of these functions store data into the buffer that are read
from a byte array passed in the argument together with the
number of bytes to read, like in the buffer_append func-
tion. Therefore, the interface requirement for such a func-
tion guaranteeing a proper use is that the number of bytes
to read be less than or equal to the size of the byte array
to read from. We have similar interface requirements for
functions that read data from the buffer and store them in a
byte array like buffer_get. Functions of the buffer library
cannot be used in any order. A buffer must first be initial-
ized using the buffer_init function, then any of the buffer
manipulation functions can be applied in any order. The
buffer is finalized and memory disposed of properly by the
buffer_free function. Interface usage and function param-
eter requirements are illustrated in Fig. 2, where we depicted
only a few functions for the sake of clarity.

3. CASE STUDY: OPENSSH’S BUFFER LI-
BRARY

The complexity of the implementation of the buffer library
in OpenSSH comes from the fact that a buffer grows on de-
mand, depending on the size of the data that are written into
it. The growth of the buffer is controlled by the following
function:

/*
* Appends space to the buffer, expanding the buffer if
* necessary. This does not actually copy the data into
* the buffer, but instead returns a pointer to the

* allocated region.
*/

void * buffer_append_space(Buffer *buffer, u_int len)
{
u_int newlen;
void *p;

if (len > BUFFER_MAX_CHUNK)
fatal("buffer_append_space: len %u not supported",

len);

/* If the buffer is empty, start using it from the
beginning. */
if (buffer->offset == buffer->end) {
buffer->offset = 0;
buffer->end = 0;

}
restart:

/* If there is enough space to store all data, store it
now. */
if (buffer->end + len < buffer->alloc) {

p = buffer->buf + buffer->end;
buffer->end += len;
return p;

}
/*
* If the buffer is quite empty, but all data is at
* the end, move the data to the beginning and retry.
*/

if(buffer->offset > MIN(buffer->alloc, BUFFER_MAX_CHUNK))
{

memmove(buffer->buf, buffer->buf + buffer->offset,
buffer->end - buffer->offset);
buffer->end -= buffer->offset;
buffer->offset = 0;
goto restart;

}
/* Increase the size of the buffer and retry. */

newlen = buffer->alloc + len + 32768;
if (newlen > BUFFER_MAX_LEN)

fatal("buffer_append_space: alloc %u not supported",
newlen);

buffer->buf = xrealloc(buffer->buf, newlen);
buffer->alloc = newlen;
goto restart;
/* NOTREACHED */

}

This function is quite complex and uses comparisons be-
tween the size of the data to store in the buffer and the avail-
able space to reallocate a buffer sufficiently large. Buffers
are used throughout the OpenSSH distribution to store all
data communicated through the network. They are the key
data structure in the application and constitute an excellent
example for our study. We want to verify that this imple-
mentation is not prone to buffer overflows.

We have developed a generic static analyzer for buffer over-
flows using Kestrel Technology’s static analysis development
platform CodeHawk. This analyzer features an efficient im-
plementation of the polyhedral abstract domain [11] and
optimized fixpoint interation algorithms. The analyzer is
generic in the sense that it does not contain algorithms that
deal with a particular code architecture. For example, con-
sider the two following functions extracted from the buffer
library:

/* Consumes the given number of bytes
from the beginning of the buffer. */

int
buffer_consume_ret(Buffer *buffer, u_int bytes)
{

if (bytes > buffer->end - buffer->offset) {
error("buffer_consume_ret: trying to get more

bytes than in buffer");
return (-1);

}
buffer->offset += bytes;
return (0);

}

void
buffer_consume(Buffer *buffer, u_int bytes)
{

if (buffer_consume_ret(buffer, bytes) == -1)
fatal("buffer_consume: buffer error");

}

In order to analyze the code precisely, the static analy-
sis engine must be able to infer a correlation between the
return value of function buffer_consume_ret and the in-
variant bytes > buffer->end - buffer->offset. The AS-
TREE analyzer handles a similar problem by using a spe-
cial domain for finding correlations among Boolean and nu-
merical variables [10]. In our case, the analyzer performs
a sequence of interleaved forward and backward invariant
propagations that achieves the same result. This algorithm
is completely generic and may handle other forms of cor-
relations among variables that are not necessarily Boolean.
Note that this algorithm is not intended to scale to large
codes, this is not our purpose here. We rather want a precise
analyzer that can handle smaller codes with good precision
without the need of manually fine-tuning the algorithms.

The buffer library contains 162 pointer checks that represent
the safety conditions associated to each pointer operation in
the library. The analysis runs in 35 seconds and is able to
prove all 162 checks.

4. CONCLUSION
We have presented a divide-and-conquer approach that al-
lows a user who is not an expert in static analysis to conduct
formal software verification of small critical components of
an application. Our approach is not compositional, in the
sense that we do not verify the whole application by com-
bining the results of individual components. Rather, we aim
at providing a methodology and an accompanying toolset of
fully automated static analyzers for verifying the most crit-
ical components of an application. The DSL will be helpful
for saving environment models of previous analyses, in effect
enabling development of libraries for reuse and giving clues
for divide-and-conquer in other applications. We have suc-
cessfully applied our approach to the verification of a com-
plex critical module of the OpenSSH distribution. We vow
to pursue these experiments and build a larger benchmark
of open-source applications.

5. REFERENCES
[1] Coverity. http://www.coverity.com.

[2] Klocwork. http://www.klocwork.com.

[3] Open ssh. http://www.openssh.org.

[4] Polyspace verifier.
http://www.mathworks.com/products/polyspace.

[5] B. Blanchet, P. Cousot, R. Cousot, J. Feret,
L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation (PLDI’03), pages 196–207. ACM
Press, June 7–14 2003.

[6] G. Brat and A. Venet. Precise and scalable static
program analysis of NASA flight software. In
Proceedings of the 2005 IEEE Aerospace Conference,
2005.

[7] P. Cousot. The calculational design of a generic
abstract interpreter. In M. Broy and R. Steinbrüggen,
editors, Calculational System Design. NATO ASI
Series F. IOS Press, Amsterdam, 1999.

[8] P. Cousot and R. Cousot. Abstract interpretation: a
unified lattice model for static analysis of programs by
construction or approximation of fixpoints. In
Proceedings of the 4th Symposium on Principles of
Programming Languages, pages 238–353, 1977.

[9] P. Cousot and R. Cousot. Systematic design of
program analysis frameworks. In Conference Record of
the Sixth Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages,
pages 269–282. ACM Press, New York, NY, 1979.

[10] P. Cousot, R. Cousot, J. Feret, L. Mauborgne,

A. Miné, D. Monniaux, and X. Rival. The ASTRÉE
Analyser. In Proceedings of the European Symposium
on Programming (ESOP’05), volume 3444 of Lecture
Notes in Computer Science, pages 21–30, 2005.

[11] P. Cousot and N. Halbwachs. Automatic discovery of
linear restraints among variables of a program. In
Conference Record of the Fifth Annual ACM
SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pages 84–97. ACM Press,
New York, NY, 1978.

[12] A. Miné. Relational abstract domains for the detection
of floating-point run-time errors. In ESOP’04, volume
2986 of LNCS, pages 3–17. Springer, 2004.

[13] A. Venet and G. Brat. Precise and efficient static
array bound checking for large embedded C programs.
In Proceedings of the International Conference on
Programming Language Design and Implementation,
pages 231–242, 2004.

Logical Foundation for Static Analysis: Application to binary static
analysis for Security

Hassen Saı̈di

Computer Science Laboratory
SRI International

saidi@csl.sri.com
http://www.csl.sri.com/users/saidi/

Abstract
Static analysis has emerged in recent years as an indis-
pensable tool in software verification. Unlike deductive ap-
proaches to program verification, static analysis can only
prove simple properties. Moreover, the myriad of static anal-
ysis tools employ specific techniques that target specific
properties of specific programs. Static analysis holds the
promise of complete automation, scalability, and handling
larger classes of properties and larger classes of systems,
but a significant gap exists between such a goal and cur-
rent static analysis tools. We argue that a logical foundation
for static analysis allows the construction of more powerful
static analysis tools that are provably correct, extensible, and
interoperable, and can guarantee more complex properties of
complex systems. We address these challenges by proposing
a tool-bus architecture that allows the combination of sev-
eral static analysis tools and methods. The combination is
achieved at the logical level using decision procedures that
implement combination of theories. We discuss the applica-
tion of such ideas to binary program analysis in the context
of intrusion detection and malware analysis.

Keywords static analysis, abstract interpretation, logical
interpretation, dynamic analysis, invariant generation

1. Introduction
Our ability to apply software analysis tools is constantly
challenged by the increasing complexity of developed soft-
ware systems. Static analysis has emerged as an indispens-
able tool in software verification. Static analysis is however
at a cross road. Figure 1 illustrates how static analysis sits at
the frontier between low cost approaches to assurance such
as testing, typechecking and dynamic analysis, and more
formal and less scalable approaches such as model check-
ing and deductive approaches. We argue that static analysis
holds the promise of maintaining the advantages of low cost,
scalability and high bug coverage, while providing degrees

of correctness that are often associated with the less scalable
and more labor intensive deductive approaches.

In a recent study [13], it was shown that current state-of-
the-art static analysis tools exhibit significant shortcomings.
The study argues that static analysis tools employ a wide
range of techniques and features with varying degrees of
success making their evaluation for correctness challenging.
That is, the criteria more commonly used to evaluate tools
such as detection, accuracy, and scalability are not enough
to evaluate the degree of dependability of the target system
after analysis. It is necessary to extend static analysis tools in
order to extract from the analysis enough evidence to support
either confidence or distrust in the target’s dependability.

Bugs Found

Ded
uc

tio
n

M
od

el
Che

ck
ing

Sta
tic

 A
na

lys
is

Dyn
am

ic
Ana

lys
is

Typ
ec

he
ck

ing

Tes
tin

g

Scale

Degree of Correctness

Figure 1. Formal Approaches

The shortcomings of current static analysis tools are sum-
marized in the study in the following categories:

• Reliability: tools often handle specific programs and do
not deal with all of the programming languages con-
structs and the dynamic run-time environment.

• Transparency: tools do not provide capabilities for ex-
tracting evidence that the flaws discovered by a static

1

analysis tool are genuine and supporting evidence on how
the flaws can be triggered.

• Flaw Detection: tools have only a partial coverage of the
space of potential flaws that can be addressed by static
analysis. Achieving high coverage require using different
tools with mixed results.

• Interoperability: tools tend to focus on one particular type
of flaws and lack an infrastructure that allows them to
share the result of their analysis.

The gap between the actual problems in practice and the
tools and approaches requires addressing these shortcom-
ings in the most general and effective way. We propose a
tool-bus architecture that addresses these challenges by ex-
ploiting recent advances in static analysis techniques [8]and
decision procedures and theorem proving [5]. Static analysis
is not a trivial task even when source code is available. It be-
comes more challenging when reasoning about applications
for which only the stripped binaries are available. We show
how such a tool-bus architecture is applied to binary static
analysis in a security context.

2. Logical Foundation for Static Analysis
Establishing the correctness of software is a computationally
intractable problem in general. Software analysis typically is
performed over a sound approximation or abstraction of the
program’s behavior. The choice of the abstraction or abstract
domain determines the class of properties that the analysis
focuses on. This approach is based on abstract interpretation
[4] a technique for approximating programs behaviors. An
abstract domain is represented by a lattice and the semantics
of the program is captured by fixed point computations in
the abstract lattice. A logical foundation for static analysis
improves static analysis in the following ways:

• Formalization of fixed point computations provides proofs
of soundness and completeness of the computation of the
given static analysis tool. Using a theorem prover such as
PVS [10], it is possible to reason about the correctness of
fixed point computations as well as the combination of
abstract domains.

• The combination of several abstract domains corresponds
to the use of the corresponding tools in conjunction.
However, In [8], it has been shown that the combina-
tion of abstract domains at the logical level, called log-
ical interpretation, provides a more precise combination
of abstract interpreters. Combining the abstract domains
is performed by combination of theories corresponding to
the abstract domains such as arithmetic and uninterpreted
functions implemented in decision procedures such as
Yices [5]. Logical theories can be used to define new
and expressive logical lattices [12]. Abstract interpreters
working over these logical lattices are constructed by us-
ing existing support for decision procedures over the cor-

responding logical theories. This support is available in
the form of Satisfiability Modulo Theory (SMT) solvers,
such as Yices. Logical lattices provide the perfect plat-
form to balance expressiveness of abstract domains with
their efficiency. Expressive logical lattices can be de-
signed that can infer complex linear and nonlinear arith-
metic invariants and even quantified invariants for arrays
and heaps [9]. Using such expressive logical domains re-
duces the number of false alarms generated by a static
analyzer. Logical lattices provide a uniform foundational
framework to explore new logical domains and the lim-
its and tradeoff between expressiveness and efficiency in
building abstract interpreters.

• The interoperability between the different static analysis
is achieved through assertions that are produced by each
tool. Each tool can use an assertion that has been com-
puted by another tool as an invariant that can aid its own
computation and analysis. A single tool or technique will
not be sufficient for achieving the levels of assurance de-
sired. Multiple approaches, as depicted in Figure 1, need
to be combined to work together to provide desired lev-
els of security or safety. In this context, theorem proving
technology will again be useful to achieve such an inte-
gration of different kinds of tools. A theorem proving en-
gine, such as PVS, can provide the backbone required to
carry out communication and transfer of results between
types of analyzers.

With the exception of testing and dynamic analysis, all
approaches in Figure 1 amount to computing an invariant of
a program. That is an assertion that is true in all runs of the
program. Each approach should be able to take advantage
of invariants computed using other approaches. Examples of
such combinations are deductive methods that use invariants
generated using static analysis. Another example is finite
abstractions computed using decision procedures such as the
case of predicate abstraction [7] used in C code verification
such as in the SLAM project [3]. In our application, we
illustrate how runtime execution of a program generates
interesting assertions about the program. Such assertions
while true only for the observed runs can be checked using
decision procedures in order to check if they hold for all
possible runs of a program. If so, such assertions become
invariants that can improve static analysis.

In other words, static analysis can greatly benefit from
the advances in theorem proving and decision procedures
to allow it to prove more complex properties and achieve
a better coverage of potential flaws that will allow better
assessment of the dependability of the target system. But
it can also greatly benefit from any other technology that
produces invariants that can then be consumed by the static
analysis tools to improve their analysis. We illustrate this
point in our binary static analysis by showing how static
and dynamic analysis combined with theorem proving work
better than any of these techniques alone.

2

3. Binary Static Analysis
Understanding what an executable does is paramount to the
analysis of computer systems and networks in predicting ac-
curately their behavior, and to the discovery of critical vul-
nerabilities that have devastating effect on our global com-
puting infrastructure. Binary program analysis represents
needs and challenges that are unmet by current analysis
methods in general and static analysis in particular.

We are interested in two areas of research where binary
program analysis is critical. The first one is in reverse engi-
neering legitimate applications in order to predict their fu-
ture behavior. Any deviation from such predicted behavior
can be considered a malicious action that may trigger a di-
agnosis and a potential response. In such a case, binary pro-
gram analysis provides us with a host-based intrusion de-
tection capability with no false alarms that is applicable to
a wide variety of applications from network services, to of-
fice applications. Using binary static analysis to build reli-
able models of applications will close the gap created by
security tools that focus on publicly disclosed vulnerabili-
ties that represent according to recent statistics no more than
7% of the total number of vulnerabilities in our computers.
Binary static analysis does not only apply to the application
code but extends to libraries for which the source code is
unavailable. It has been shown that finding anomalies in the
stream of system calls issued by user applications is an ef-
fective host-based intrusion detection capability, and static
analysis is used to derive a model of application behavior re-
sulting in a host-based intrusion detection system with three
advantages: a high degree of automation, protection against a
broad class of attacks based on corrupted code, and the elim-
ination of false alarms. Therefore, static analysis produces a
model in the form of an approximation of the behavior of the
application. While this eliminates false alarms, since alarms
are raised only when the application deviates from its over-
approximation, it leads to a weakness of the model. That is,
the model might accept sequences of system calls that the
application would not allow. These sequences could poten-
tially compromise the application and the underlying oper-
ating system. The more precise the model is, the less such
attacks are possible. The precision of the model depends on
the complexity of the application’s code and the power of the
static analysis employed to build the model. We observe that
many types of attacks are preventable by making sure that
the application models used for intrusion detection capture
the semantics of the program in a simple and precise way.
We observe that attacks always inevitably violate an invari-
ant of the program, and that any approach to static-analysis-
based intrusion detection will be weakened by the absence
of such invariants from application models.

The second application of binary program analysis is mal-
ware detection and reverse engineering. Static binary anal-
ysis aims at reverse engineering the executable in order to
answer the following fundamental questions: what is the in-

tended behavior of the malware? how does it propagate it-
self? how does it protect itself from detection? is this a new
instance of an already known malware, or does this malware
contain logic that has never been observed before?. Current
techniques for malware analysis rely on the execution of the
malware and observing its behavior. However, a single or
multiple executions of a malware instance does not provide
a full picture of the potency of a malware and can only pro-
vide a partial image of its intended behavior due the multiple
layers of obfuscation present in today’s malware. Only static
analysis can reveal the full extend of the malware behavior
and its various triggers. Much of our malware analysis shares
the same static analysis infrastructure with building models
that represent the sequences of system calls and their argu-
ments for arbitrary applications. Therefore, invariants gener-
ated at any control location will improve the construction of
a more precise control flow graph of the program by taking
into account the flow of data and context sensitivity captured
using such invariants.

Source code analysis has seen significant advances in re-
cent years. However, little has been achieved in analyzing
binary programs. Most notable work in this area is the work
of Value Set Analysis (VSA) [2] where the values of regis-
ters and memory addresses is approximated by a set of pos-
sible values determined statically. Our analysis focuses on
invariant generation using a combination of static analysis,
theorem proving in the form of decision procedure and dy-
namic analysis. We are interested in three main invariants of
binary programs:

• linear invariants that represent constraints on function
and system calls arguments and their return values and
that determine the evaluation of jump conditions at any
point of the program.

• stack invariants that represents constraints on the values
of the stack at any point of the program

• heap invariants that represent constraints on the heap.

The three kinds of invariants can be expressed in the in-
put language of Yices [5] that supports the usual typesint,
real, andbool, user defined recursive datatypes and bitvec-
tors, as well as uninterpreted functions and dependent types.

4. Quasi-static Binary Analysis
We integrate static and dynamic analysis in a novel algo-
rithm that we call quasi-static analysis in which constraints
are generated dynamically from runs of the application as
well as by our invariant generation techniques. We have im-
plemented quasi-static analysis for C code in [11], and we
describe in what follows how it is implemented for binary
programs (Figure 2). There has been a wide body of litera-
ture that addresses the problem of invariant generation. What
is important to notice is that with the help of decision proce-
dures, it is much easier to prove that a given assertion is an
invariant of a program than to discover such assertion using

3

invariant generation techniques. For dynamic analysis of ex-
ecution runs we use Daikon [6], a tool for generating likely
invariants. What dynamic analysis with tools such as Daikon
offers is an easy way of extracting assertions that are true for
a particular run of the application. With the help of Yices [5]
and similar decision procedures, we check if those assertions
hold for all runs. Our Quasi-static analysis process relieson
an initial phase of disassembly. We use IDA Pro [1] to gen-
erate from the executable and invoked DLLs, a control flow
graph (CFG) from which further analysis is conducted. IDA
pro is known to be the most effective disassembler tool.

.exe

.dll

IDA
Disassembler

CFG

Debugger

Daikon Yices

Database

Invariants

ASG

Figure 2. The Architecture of our Binary Analysis Tool-bus

4.1 Static Analysis

During the static analysis phase, we use the IDA Pro disas-
sembler to obtain the CFG of the application and its DLLs.
IDA Pro provide us with the a list of functions, memory lo-
cations containing constants such as strings, and the CFG
for each individual function. It also identifies library calls
and their arguments. The CFG is used by the static analyzer
to compute invariants at each control location and to sum-
marize individual functions in order to perform an interpro-
cedural analysis and to build a global CFG. We use Yices
to encode the semantics of instructions to define the logi-
cal lattice on which the analysis is performed. We also use
Yices as an assertion checking engine for the assertions that
are generated by dynamic analysis. An invariant database is
used to store all of the computed invariants which are used
to refine the global CFG. The global CFG can be viewed as
an abstract state graph (ASG) similar to the one constructed
by predicate abstraction [7]. Each newly generated invariant
represents a refinement of the global CFG. The definition
of the semantics of binary programs in Yices uses the usual
Yices supported datatypes. The following is the Yices defi-
nition of the 32 bitvector type representing integers:

(define-type int32 (bitvector 32))

We also define the stack type as a list as follows:

(define-type list

(datatype nil

(cons car::int32 cdr::list)))

The list is either empty (nil) or a list composed of a first
element (car) of type 32 bit integer and a tail of type list
(cdr). Consider the following simple example:

L1 : mov eax, 0

L2 : mov ebx, eax

L3 : inc eax

L4 :

Each instruction is interpreted by its semantics that de-
scribe how the state variables are affected by the instruction.
The registers, flags, and variables are all indexed by the num-
ber of the line of code where they appear:

• L2: eax 2 = 0

• L3: ebx 3 = eax 2 ∧ eax 3 = eax 2

• L4: eax 4 = eax 3 + 1 ∧ ebx 4 = ebx 3

On the other hand, each instruction generates an asser-
tion about the program that might be propagated to other
locations:

• L2: eax = 0

• L3: ebx = eax

• L4: eax = 1

4.2 Dynamic Analysis

Our Dynamic analysis consists of tracing the application’s
execution within the IDA Pro debugger in order to extract
runtime information. In particular, we are interested in regis-
ter values, stack, and heap values. IDA Pro allows us to trace
those values at any particular program point. Since invariant
generation techniques and static analysis techniques based
on abstract interpretation struggle with the difficult problem
of discovering loop invariant, we focus our dynamic analysis
on loops since our static analyzer can easily deal with loop-
free binary code. Dynamic analysis can often compute asser-
tions that static analysis can not compute. Figure 3 illustrates
this point. The figure describes the control flow of a function
Cntrl with two argumentsarg 0 andarg 4 of type inte-
ger. Both argumentsarg 0 andarg 4 are decremented until
arg 0 reaches the value0. At that point, if the variables are
equal then the function returns a 0, or a 1 otherwise.

We run the application in the IDA Pro debugger on few
inputs and we obtain the following traces showing the values
of arg 0 andarg 4 at various points of the program:

...

lea eax,[ebp+arg_4] ; Stack[]:arg_0: 00 00 00 00

...

mov eax,[ebp+arg_0] ; EAX=0

cmp eax,[ebp+arg_4] ; Stack[]:arg_0: 00 00 00 00

jnz short loc_4831B ; Stack[]:arg_4: 00 00 00 00

...

Imagine that this function is called with two valuesv1 and
v2 at the beginning of a large application and depending on
the result returned, a substantially different sub parts ofthe
application’s code is executed. All of the statical analysis
approaches to intrusion detection known in the literature

4

Block 2 :
L1 : mov [ebp + var 4], 0
L2 : jmp short L 48322

Block 1 :
L1 : mov eax, [ebp + arg 0]
L2 : cmp eax, [ebp + arg 4]
L3 : jnz short L 4831B

L 4831B :
L1 : mov [ebp + var 4], 1

L 48322 :
L1 : mov eax, [ebp + var 4]
L2 : leave

L3 : retn

Cntrl :
L1 : push ebp

L2 : mov ebp, esp

L3 : sub esp, 4

L4 : jmp short L 48304

L 48304 :
L1 : cmp [ebp + arg 0], 0
L2 : jnz short L 482FC

L 482FC :
L1 : dec [ebp + arg 0]
L2 : lea eax, [ebp + arg 4]
L3 : dec dword ptr [eax]

Figure 3. Quasi-Static Analysis Example

will either ignore such a function because it does not refer
to system calls, and therefore allow both sub parts to be
executed, or will analyze such a function and will determine
that the only invariant that can be extracted and the exit
point of the function iseax = 1 or eax = 1 no matter
what arguments are passed to the function. Static analysis
techniques based on abstract interpretation will generatethe
same invariant. This is mainly due to the presence of a loop
who’s body is the block labeledL 482FC. While an abstract
interpreter will track the values of[ebp+arg 0], that is, the
value of the variable representing the first argument, and the
value of the memory location who’s address is in[eax], that
is, [ebp+arg 0], the value of the variable representing the
second argument, it will not converge and will generate the
following invariant at the end of the loop[ebp+arg 0] = 0

and [ebp+arg 4] = ⊥]. In other words, we know that at
the exit point of the loop,[ebp+arg 0] = 0 is true, which
is the condition of exiting the loop, but any information
about[ebp+arg 4] is lost. Using Daikon, we generate a
set of candidate invariants. In particular, Daikon generates
the following loop constraint indicating that the difference
between the two arguments is constant:

arg 0 482FC - arg 4 482FC = arg 0 - arg 4

It is easy to prove using Yices that such a candidate invariant
is indeed an invariant. Using this constraint, we are able to
summarize functionCntrl using the following predicates:

arg 0 = arg 4 implieseax = 0
arg 0 6= arg 4 implieseax = 1

4.3 Using Yices Interface as an Abstract Interpreter
and Assertion Checker

Our static analyzer is implemented using just three Yices
commands that represents a simple interface to a very pow-
erful decision procedure.

• (assert+ fml): this commands adds the formulafml
to the context. To each asserted formula, a unique id in
the form of a positive integer is associated.

• (check) : this commands checks whether the conjunc-
tion of the already asserted formulas is satisfiable. That
is, the conjunction does not contain a subset of inconsis-
tent formulas.

• (retract id) : This command removes a formula
with id id from the context.

When analyzing a block of instructions, we assert a for-
mula for each instruction in the block. The formula is the
semantics of the execution of the instructions.

4.4 Using Unsatisfiable Core to Propagate Invariants

When invoking thecheck command, Yices checks whether
the already asserted formulas are satisfiable or not. The re-
sult of Yices can besat indicating that the context is satisfi-
able and therefore the conjunction of the formulas in the con-
text is an invariant of the program at the current program lo-
cation. When the context is unsatisfiable, Yices returns with
unsat id1 id2 id3 ... idk indicating that the subset of for-
mulasid1 id2 id3 ... idk is inconsistent. Since the recently
added formula reflects the semantics of the execution at the
current control point, it remains in the context, and any for-
mula in the subset that causes the inconsistency has to be
removed.

5. Dealing With Obfuscation Techniques
Binary programs often exhibit various levels of obfuscation.
Sometimes these obfuscation are intended to defeat static
analysis. Some obfuscations can be the result of compiler
optimization that produces an efficient code that is hard to
analyze. In the following simple example, we show how our
static analysis tool-bus based on Yices allows us to easily
analyze certain classes of obfuscated programs. The exam-
ple (Figure 4) describes a small program where a function
Main calls the functionMax that computes the max of 2 and
4. The arguments 2 and 4 are pushed onto the stack as well
as the return addressL5, and the program jumps to the func-
tion Max. Figure 5 shows the same example where the same

5

Main : Max :
L1 : push 4 L6 : mov eax, [esp+ 4]
L2 : push 2 L7 : mov ebx, [esp+ 8]
L3 : push offset L5 L8 : cmp eax, ebx

L4 : jmp Max L9 : jg L11

L5 : ret L10 : mov eax, ebx

L11 : ret 8

Figure 4. Function call obfuscation usingpush/jmp

Main : Max :
L1 : push 4 L7 : mov eax, [esp+ 4]
L2 : push 2 L8 : mov ebx, [esp+ 8]
L3 : push offset L6 L9 : cmp eax, ebx

L4 : push offset Max L10 : jg L12

L5 : ret L11 : mov eax, ebx

L6 : ret L12 : ret 8

Figure 5. Function call obfuscation usingpush/ret

functionality is achieved using thepush and ret instruc-
tions. Figure 6 shows the same example where the same
functionality is achieved using thepush and ret instruc-
tions. Translating the semantics of the three programs into

Main : Max :
L1 : push 4 L5 : mov eax, [esp + 4]
L2 : push 2 L6 : mov ebx, [esp + 8]
L3 : call Max L7 : cmp eax, ebx

L4 : ret L8 : jg L10

L9 : mov eax, ebx

L10 : pop ebx

L11 : add esp, 8

L12 : jmp ebx

Figure 6. Function call obfuscation usingpop to return

Yices, leads to equivalent states at the end of the executionof
the three programs. If we modify the third program (Figure
7) by making the call toMax dependent of the return value
of the functionCtrl (Figure 3), we can prove that function
Max will never be called.

Main : Max :
L1 : push 3 L5 : mov eax, [esp+ 4]
L2 : push 5 L6 : mov ebx, [esp+ 8]
L3 : call Cntrl L7 : cmp eax, ebx

L13 : test eax, eax L8 : jg L10

L14 : jnz L18 L9 : mov eax, ebx

L15 : push 4 L10 : pop ebx

L16 : push 2 L11 : add esp, 8

L17 : call Max L12 : jmp ebx

L18 : ret

Figure 7. Function call obfuscation usingpop to return

6. Conclusion
Different static analysis tools operate on different abstract
representation of a program. They are engines for generat-
ing different invariants of the same program. Abstract state
graphs computed by predicate abstraction can be viewed as
an intermediate structure that allows each tool to share its
results and to take advantage of the analysis performed by
other tools. In fact, the analysis of each tool can be viewed
as a refinement of the abstract state graph. We have shown
how dynamic analysis and decision procedures can be com-
bined with static analysis to build more precise models of
binary programs. We believe that a tool-bus architecture op-
erating on abstract state graphs is an efficient and general
approach to combining and extending static analysis tools in
order to prove more complex properties of software while
being scalable and computationally efficient. Furthermore,
the nondeterminism in the abstract state graph indicate what
part of the system requires more analysis.

Acknowledgments
The ideas described in this paper were inspired by many
discussions with my colleagues Bruno Dutertre, Sam Owre,
John Rushby, Natarajan Shankar and Ashish Tiwari.

References
[1] IDA Pro Dissasember . http://www.datarescue.com/ida.htm.
[2] G. Balakrishnan and T. Reps. Analyzing memory accesses

in x86 executables. InProc. Compiler Construction (LNCS
2985), pages 5–23. Springer Verlag, Apr. 2004.

[3] T. Ball and S. K. Rajamani. The SLAM project: Debugging
system software via static analysis. InPOPL ’02: Proceed-
ings of the 29th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages, pages 1–3, Jan. 2002.

[4] P. Cousot and R. Cousot. Abstract interpretation: A unified
lattice model for static analysis of programs by construction
or approximation of fixpoints. InSymposium on Principles of
Programming Languages, pages 238–252. ACM Press, Jan.
1977.

[5] B. Dutertre and L. de Moura. A fast linear-arithmetic
solver for dpll(t). InThe 18th Computer-Aided Verification

6

Conference (CAV’06), Seattle, June 2006. Lecture Notes in
Computer Science.

[6] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin.
Dynamically discovering likely program invariants to sup-
port program evolution.IEEE Transactions on Software
Engineering, 27(2):1–25, Feb. 2001.

[7] S. Graf and H. Saı̈di. Construction of abstract state graphs
with PVS. In O. Grumberg, editor,Computer Aided
Verification, volume 1254 ofLecture Notes in Computer
Science, pages 72–83, Haifa, Israel, June 1997. Springer
Verlag.

[8] S. Gulwani and A. Tiwari. Combining abstract interpreters.
In PLDI ’06: Proceedings of the 2006 ACM SIGPLAN confer-
ence on Programming language design and implementation,
pages 376–386, New York, NY, USA, 2006. ACM Press.

[9] W. McCloskey, S. Gulwani, and A. Tiwari. Lifting abstract
interpreters to quantified abstract domains. InProc. Princi-
ples of Programming Languages, POPL, 2008. To appear.

[10] S. Owre, J. M. Rushby, and N. Shankar. PVS: A prototype
verification system. In D. Kapur, editor,11th International
Conference on Automated Deduction (CADE), volume 607,
pages 748–752. Springer Verlag, June 1992.

[11] H. Saı̈di. Guarded models for intrusion detection. InPLAS
’07: Proceedings of the 2007 workshop on Programming
languages and analysis for security, pages 85–94, New York,
NY, USA, 2007. ACM Press.

[12] A. Tiwari and S. Gulwani. Logical interpretation: Static
program analysis using theorem proving. In F. Pfenning,
editor, CADE-21, volume 4603 ofLNAI, pages 147–166.
Springer, 2007.

[13] P. Vales, J. Butler, D. Rager, C. Stack, and C. Telfer. Gaps
in static analysis tools coverage. InOMGs First Software
Assurance Workshop: Working Together for Confidence,
Fairfax, VA, mar 2007.

7

	SAS II ADApaper2.pdf
	nadworny
	Bartholomew
	1. Introduction
	2.1 Effectiveness
	2.2 Scope

	3. Method
	4. Evaluation Criteria and Methodology
	5. Results
	6. Conclusions
	6.1 Cost Effective Reduction of Rework
	6.2 Reducing Formal Compliance Cost – Automated vs. Manual Analysis
	6.3 Potential for Increasing Rework Cost
	6.4 Automating Conformance Checking
	6.5 Automating Non-Critical Error Detection

	7. References

	CWE_update_2007
	venet_sas07
	final_saidinopage

	Text5:
	Text6:
	Text3:
	Text7:
	Text10:
	Text8:
	Text9:

