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Static Analysis Summit II (http://samate.nist.gov/SASII) was held 8 and 9 November 
2007 in Fairfax, Virginia,and was co-located with SIGAda 2007.  A total of 61 people 
registered, coming from government, universities, tool vendors and service providers, and 
research companies. The workshop had a keynote address by Professor William Pugh, 
paper presentations, discussion sessions, a panel on “Obfuscation Versus Analysis – Who 
Will Win?”, and a new technology demonstration fair. The workshop is one of a series by 
NIST’s Software Assurance Measurement and Tool Evaluation (SAMATE) project, 
which is partially funded by DHS to help identify and enhance software security 
assurance tools.  
 
The Call for Papers pointed out that "Black-box" testing cannot realistically find 
maliciously implanted Trojan horses or subtle errors with many preconditions. For 
maximum assurance, static analysis must be applied to all levels of software artifacts, 
from models to source code to binaries. Static analyzers are quite capable and are 
developing quickly. Yet, developers, auditors, and examiners could use far more 
capabilities. The goal of this summit is to convene researchers, developers, and 
government and industrial users to define obstacles to such urgently-needed capabilities 
and try to identify feasible approaches to overcome them, either engineering or research. 
 
The Call for Papers solicited contributions describing basic research, applications, 
experience, or proposals relevant to static analysis tools, techniques, and their evaluation. 
These proceedings include the agenda, some discussion notes, and reviewed papers. 

 
We are especially grateful to Prof. William Pugh for the enlightening keynote address. I 
thank those who worked to organize this workshop, particularly Wendy Havens, who 
handled much of the correspondence.  We appreciate the program committee for their 
efforts reviewing the papers. We are grateful to NIST, especially the Software 
Diagnostics and Conformance Testing Division, which is in the Information Technology 
Laboratory, for providing the organizers' time. On behalf of the program committee and 
the SAMATE team, thanks to everyone for taking their time and resources to join us. 
 
Dr. Paul E. Black 
February 2008 
 
 
Disclaimer: Any commercial product mentioned is for information only; it does not imply recommendation 
or endorsement by NIST nor does it imply that the products mentioned are necessarily the best available for 
the purpose. 
 



Static Analysis Summit II Agenda 
 

Thursday, 8 November, 2007 
 
12:45 :  Static Analysis for Improving Secure Software Development at  
                         Motorola - R Krishnan (Motorola), Margaret Nadworny (Motorola), and 
                         Nishil Bharill (Motorola) 
 
1:10 :  Discussion: most urgently-needed capabilities in static analysis 
 
1:40 :   Evaluation of Static Source Code Analyzers for Real-Time Embedded  
                         Software Development - Redge Bartholomew (Rockwell Collins) 
 
2:05 :   Discussion: greatest obstacles in static analysis 
 
2:50 :   Common Weakness Enumeration (CWE) Status Update – Robert 
                        Martin (MITRE) and Sean Barnum (Cigital) 
 
3:15 :   Discussion: possible approaches to overcome obstacles 
 
3:45 :   Panel: Obfuscation vs. Analysis - Who Will Win? – David J. Chaboya  
  (AFRL) and Stacy Prowell (CERT)  
 
4:30 :  New Technology Demonstration Fair 
      FindBugs,   FX ,  Static Analysis of x86 executables  
 
Friday, 9 November, 2007 
 
8:30 AM:  Discussion: Static Analysis at Other Levels 
 
9:00 :   Keynote:  Judging the Value of Static Analysis - Bill Pugh (UMD) 
                        The slides for the keynote address are on-line at 
                          http://www.cs.umd.edu/~pugh/JudgingStaticAnalysis.pdf 
 
10:15 :  A Practical Approach to Formal Software Verification by Static 

 Analysis - Arnaud Venet (Kestrel Technology) 
 
10:40 :  Discussion: inter-tool information sharing 
 
11:10 :  Logical Foundation for Static Analysis: Application to Binary    
                        Static Analysis for Security - Hassen Saidi (SRI) 
 
11:35 :  Wrap up discussion: needs, obstacles, and approaches 
 
  



Discussion and Panel Notes 
To catalyze discussion, we presented six questions or topics. The discussions were not 
meant to reach a consensus or express a majority, and seldom did they. Workshop 
participants presented ideas, questions, recommendations, cautions, and everything in 
between. Although we try here to note what was said, it is by no means a complete record 
of what was discussed (none of us wrote fast enough). In some cases we combined 
similar comments across sessions. We hope these notes convey some feel for the 
discussions and lead to improvement. 

1:10 PM Most Urgently-needed capabilities in Static Analysis 

Facilitator: Vadim Okun, NIST 

Be able to analyze 
Concurrent/race conditions 
Timing 
Runtime dispatch, deep hierarchies, highly polymorphic systems 
Function pointers 
Integer overflow 
Numeric computations accurately (comment was: Inaccurate numeric analysis) 
Inline assembly with multi-languages across multi-boundaries 

General capabilities needed/capabilities missing 
Lack of reasoning for reporting 
Reduce false positives 
Report the probability that a weakness is exploitable. 
Tool reports what its coverage, that is, what it looks for  
Scalability (e.g., 100 million lines) 
Whole application analysis 
A standard way to express environment in a standard way so one can state what is 

known, so the next tool doesn’t have to do the same thing. 
Need guarantee that if we run this tool, we will not have these exploits. 

 
2:05 PM Greatest Obstacles in static Analysis 

Facilitator:  Paul E. Black, NIST 

Need scientific surveys or studies that show return on investment of tools. 
 
Its likely there is at least one tool for each of the things on the wish list. We need a 
toolbox. 
 
Tools do not know what the requirements are, what the program is supposed to do. To go 
beyond buffer overflow, which is (almost) always a violation, tools need a specification, 
like IFIL. Java has JML, and there is Splint for C, but we can’t get people to use 
annotations! We need an easier way to write annotations. 



Programmers need skill sets for good code creation; they should be reinforced by tools. 
 
The European safety community has used static analysis for years. They made their case. 
 
3:15 PM Possible Approaches to Overcome Obstacles 

Facilitator:  Redge Bartholomew, Rockwell Collins 

Vendor should provide information about what exactly the tools find. 
 
Many people are skeptical about using test sets, particularly fixed sets, to evaluate tools. 
Tools get tailored to test suites. 
 
You can’t include a tool in certification efforts until it is very well qualified. Tests are 
necessary, but not sufficient. 
 
There was a discussion about funding better software, both research and development of 
techniques and paying well for good quality software. Rod Chapman said, you cannot 
polish junk. (That is, software must be built well from the beginning. No amount of tools 
or techniques can “repair” poor software.) He also said, if all software is junk, we might 
as well buy cheap junk. (That is, if consumers can’t judge the quality of software, it is 
logical in today’s world to assume the worst of software. Therefore people won’t pay 
much for software tools or programs.) 
 
3:45 PM Panel: Obfuscation vs. Analysis – Who Will Win? 

Malware writers use obfuscation to disguise their programs and hide their exploits. Good 
guys need powerful analysis to crack malware quickly. Good guys also use obfuscation to 
protect intellectual property, and in military applications, hinder enemies from figuring 
out weapon systems (remember the Death Star?). They don't want bad guys to crack their 
techniques. This panel was set up to explore who will win and why. 
 
The panelists gave very good presentations, but instead of entertaining controversy, they 
agreed that analysts ultimately win. 
 
8:30 AM Static Analysis at Other Levels 

Facilitator:  Michael Kass, NIST 

Here are other static analysis applications or targets, in addition to the “default” source 
code analysis for bugs: 

Requirement analysis (lots of resistance from implementers because it is yet another 
language to learn, but probably will happen) 

Architectural design review 
Compiler/Decompilers 
Code metrics generation, e.g., measuring code 
Program understanding 



Reverse engineering (e.g., byte code to UML design) 
Re-engineering (e.g., re-factoring) 
Program/property verifier 
Binary analysis (they are as good as source analyzers if you have the symbol table) 

 
The audience suggested more static analysis tools: 

Source to source transformers 
Same language translator (e.g., debugger, dissembles, emulators) 
Threat modeling tools 
Impact analysis/slicers 
Model checker (it is not useful unless there is some manual checking) 
Combining static and dynamic analysis (e.g. static analysis plus testing, static analysis 

and program verification) 
 
10:40 AM Inter-tool Information Sharing 

Facilitator:  Paul E. Black, NIST 

The most important requirement for inter-operation of tools is to have common reporting 
format.  Many companies have more than one type of tool, and to facilitate integration 
among these different tools in a user-friendly environment, it is useful to have one tool’s 
output become another tool’s input. 

To promote progress, here are some use cases for information sharing: 
Generic format to explain “reasoning” of a bug report 
SA tool -> infeasible paths -> testing 
SA tool -> no alias in blocks, etc. -> compiler optimization 

 
11:35 AM Wrap Up discussion:  Needs, Obstacles, and Approaches 

Facilitator:  Paul E. Black, NIST 

The biggest need is for people to agree on what content to share and common report 
formats. One needs to get information from runs into static analysis as the basis of hints, 
hypotheses, or invariants. We need to identify use cases for information sharing. The 
biggest challenge today is for tool to explain (to another tool or to human) the following: 

The complicated path and the “reasoning” or evidence of a bug report. 
The information provided to an assurance case (e.g., guaranteed no SQL-injection) 
What areas (either code blocks or types of problems) are NOT analyzed. 

 
Such work needs to address the different needs of auditors, assessors and developers. 
 
The recommendation is for NIST to conduct a tool exposition. Tool vendors should sign-
up to run their tools with NIST’s selected test source programs.  

A burning issue is an effective way to get feedback from users about tools. 
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Abstract 
As part of an overall initiative to improve the secu-
rity aspects in the software used in Motorola’s 
products, training and secure coding standards 
were developed. The goal is to decrease the num-
ber of security vulnerabilities introduced during 
the coding phase of the software development 
process.  This paper describes the creation of the 
secure coding standards and the efforts to auto-
mate as many of the standards as possible.    
 
Originally, the efforts focused on the Inforce tool 
from Klocwork, as many Motorola business units 
already used the tool for quality but without the 
security flags activated.  This paper describes the 
efforts to evaluate, extend, and create the coverage 
for the secure coding standards with Klocwork.  
More recently, an opportunity arose which allowed 
a team to evaluate other static analysis tools as 
well.  This paper also describes the findings from 
that evaluation.    
 

Keywords: static analysis, security, Klocwork 

 

Introduction 
Security is one of the key product quality attributes 
for products and solutions in telecommunications. A 
denial of service attack on a telecom network could 
mean a huge loss in revenue to the operator. With 
mobile phones used increasingly for a wide range of 
services beyond telephony from messaging to online 
shopping, security has become an important aspect of 
the software on these devices. Factors such as the in-
creased connectivity of devices and the use of open 
source software increase the security risks.  As a re-
sult, Motorola has increased the priority and attention 
to the security related aspects of its products. 

Motorola Software Group is a software development 
organization existing in the Corporate Technology 
Office providing software resources and services to all 
of the Motorola Businesses. 

The approach within Motorola Software is to build 
security into the products throughout the development 
lifecycle.  Changes in software development are insti-
tutionalized when they become part of the process, 

with appropriate tool support and with the engineering 
community trained on the required tools and process 
changes. This approach is depicted in Figure-1. Spe-
cifically, to instill a security focus in the coding phase, 
the coding standards are enhanced with security rules, 
training is required on the basic concepts relating to 
secure programming, and a static analysis tool is used 
to automate the identification of any violation of the 
security rules.      

Security Focus in the Coding Phase 

The coding phase is recognized as a key phase, where 
vulnerabilities are introduced by the developers into 
the code which put the system at risk from attack.  
The vulnerabilities targeted include buffer overflow 
and format string vulnerabilities.  This area was 
viewed as requiring relative low effort in terms of 
changing processes but high impact in improving the 
security of the products.  As a result,   the coding 
phase was the first area of security change within the 
organization. 

Recognized security experts from FSC, now Assurent, 
a subsidiary of TELUS, were engaged to assist with 
the development of Secure Programming Training to 
educate the engineers on the need, importance, and 
details of Secure Programming.  In addition, the As-
surent staff assisted in the enhancement of the coding 
standards for C, C++, and Java with security rules. 
Previously, the coding standards for quality focused 
on the readability and maintenance aspects of the 
code.  The security rules introduced significant con-
tent, addressing what was and what was not recom-
mended from the security perspectives.  The content is 
segregated into rules which are mandatory and guide-
lines which are recommended and are optional.  

For the C coding standards, twenty-three rules and 
twenty-one guidelines were introduced and adopted. 
The rules include the following aspects: 

• Buffer Overflows 
• Memory allocation and deallocation 
• Handling of resources such as filenames 

and directories 
• Use of  library functions 
•  Overflows in computation 
• Avoiding format string vulnerabilities 
• Input validation 
 



• Handling of sensitive data 
• and others. 

 
For the C++ coding standards, thirty two rules and 
three guidelines were introduced and adopted. The 
rules cover the following aspects: 

• Memory allocation  
• Avoiding C-style strings 
• Initialization 
• Pointer casting 
• Use of vectors instead of arrays 
• Orthogonal security requirements 
• Exceptions 
• Use of STL (Software Template Library)  
• and others. 
 
For the Java coding standards, sixteen rules and three 
guidelines were incorporated. The rules include the 
following aspects: 

• Use of secure class loaders 
• Object Initialization 
• Securing of packages, classes, methods, variables 
• Handling of sensitive data 
• Random number generation 
• Comparison of classes 
• and others. 
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Figure-1: Instill Change in the Implementation Phase 

Static analysis tools help in automatically detecting 
violations of the security rules.  

Originally, the efforts focused on the Inforce tool 
from Klocwork as many Motorola Business Units 
already used the tool for quality but without activated 
security flags.   More information about Klocwork is 
available on their web site at:  www.klocwork.com. 
No other tools were seriously considered initially.    
Supporting two different static analysis tools, one for 
quality and another for security, was not practical for 

three reasons:  licensing costs, productivity inefficien-
cies and vendor management.   

Supporting the Security Rules in Klocwork 
The following process was used to collaborate with 
Klocwork to support the Motorola Coding Standards.  
The security rules in the coding standards were 
analyzed and the opportunities for automatic detection 
of violations to the coding standard were identified. 
Some rules, by the nature of their content, cannot be 
verified through static analysis.  An example of such a 
rule is:  “Resource paths shall be resolved before 
performing access validation”. This particular rule 
must be verified through usual inspection practices.  
This overall analysis of which rules could be auto-
mated was a collaborative effort with the Klocwork 
technical team. 
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Figure-2: Use of Klocwork Inforce with Security 
Flags 

Test cases were created for each of the rules verifiable 
through static analysis.  Negative testcases create 
instances of violation of each security rule. The tool is 
intended to catch and flag these negative errors.  
These negative test cases check for false negatives.  
Positive testcases are instances that are in 
conformance to the rule. The tool is not expected to 
flag errors on these testcases.  These positive testcases 
check for false positives.  



The existing checkers available in Klocwork were 
analyzed.  Gaps between the available checkers and 
the verifiable security rules were identified.  
Klocwork has a feature where additional checkers can 
be created without waiting for the next release of the 
tool. These extensibility checkers were used to 
address the identified gaps. 

The new extensibility checkers identified were 
developed and delivered by Klocwork, in a phased 
manner for C and Java.  The success criteria for these 
extensibility checkers were to detect the violations in 
the negative testcases and pass the positive testcases.  
The C extensibility checkers have not been 
incorporated into Klocwork’s general releases due to 
legal intellectual property related issues, which is also 
why they are not described in further detail. Activities 
have been initiated to revisit this situation.  These 
extensibility checkers were delivered to Motorola and 
confirmed.   The situation for Java was handled 
similarly.  The checkers were written by Klocwork 
but were integrated into Release 7.5, as Klocwork 
determined that the security rules could be identified 
from published material.  For the C++ security rules, 
Motorola software group engineers in Bangalore were 
trained by Klocwork to write extensibility checkers.  
The Bangalore team developed the checkers in-house.  

Table-1 shows the progress made in the Klocwork 
Inforce tool with this activity.   The first column pro-
vides the programming language.  The second column 
provides the total number of security rules including 
subrules for the corresponding programming lan-
guage.  The third column provides the total number of 
security rules and subrules which could be automated.  
The fourth column indicates the number of rules suc-
cessfully supported in earlier versions of Klocwork, 
specifically version 6.1 for C and C++ and 7.1XG for 
Java.  This represents the initial results from this ac-
tivity.  The fifth column provides the number of rules 
successfully supported since Klocwork 7.5.  For C, 
Klocwork 6.1 supported eight rules in Klocwork 
which was extended to support twenty-two rules in 
Klocwork 7.5. For C++, Klocwork 6.1 supported two 
rules which were extended to support nineteen rules in 
Klocwork 7.5.   For Java, Klocwork 7.1XG supported 
two rules in Klocwork which was extended thirteen 
rules in Klocwork 7.5.  The improvement has been 
impressive but is by no means complete.  

Klocwork Benchmarking Activity 
Buffer overflow is one of the most dangerous coding 
vulnerabilities in software that continues to be 
exploited. It has obtained the attention of researchers 
as well, including the Software Assurance Metrics and 

Tools Evaluation (SAMATE) [4] project, sponsored 
by the U.S. Department of Homeland Security (DHS), 
National Cybersecurity Division and NIST. 

The required scripts were developed to utilize the test 
cases/code snippets offered by the MIT Test suite [1] 
and were passed through Klocwork with all the errors 
enabled.  Overall, five defects were identified in the 
Klocwork tool itself.   Change requests have been 
submitted to Klocwork and the errors will be ad-
dressed in the upcoming 8.0 release of Klocwork. The 
defects identified include: 

• Violation on access to shared memory 
• Function call used as an array index with re-

turn value exceeding array bounds 
• Array element value used as index in ac-

cessing another array exceeding array 
bounds 

• Use of function call in strncpy for the value 
of n, exceeding array bounds 

• Accessing beyond bounds, after assigning 
the array start address to a pointer variable. 

 
SAMATE[4] provides a set of testcases for different 
languages like C, C++, Java, PHP, etc. A study was 
performed to understand the coverage of the security 
rules in the Motorola coding standards in this refer-
ence data set.  There are 1677 testcases for C and 88 
testcases for C++ in the SAMATE reference dataset. 
These testcases cover aspects such as memory leaks, 
double free memory errors, input validation, buffer 
overflow of both stack and heap, null dereference, 
race condition, variable initialization, command injec-
tion, cross-site scripting, format string vulnerabilities 
and so on. There was considerable overlap between 
the Motorola test suite and the SAMATE test suite.  
Thirteen of the security rules in the Motorola Software 
C coding standard are covered in the SAMATE test 
set. Four of the security rules in the Motorola Soft-
ware C++ coding standard are covered in the 
SAMATE test set.  

There are thirty-three testcases for Java in the 
SAMATE reference dataset. These testcases cover 
aspects such as tainted input, arbitrary file access, 
tainted output, cross-site scripting, memory resource 
leaks, and return of private data address from public 
methods. There are no overlaps with the security rules 
in the Motorola Software Java coding standard. This 
is summarized in Table-2. 

One of the major shortcomings identified with 
Klocwork was its inability to identify the use of 
uninitialized array variables.  The  Klocwork team has  



analyzed and identified particular aspects of this 
general problem: 
 

Lan-
guage 

Number 
of Secu-

rity Rules 

Number 
of Auto-
mated 
Rules 

Support in  
Klocwork 

6.1 

Support in 
Klocwork 

7.5 

C 39 25 8 22 

C++ 34 25 2 19 

Java 16 5 9 13 

Table-1: Security Rules support in Klocwork 

• Uninitialized use of array elements of simple 
variable type 

• Uninitialized use of array elements of complex 
variable type such as arrays of structures or  
pointers 

• Uninitialized use of global arrays 
• Partial initialization determination: being able 

to identify that some elements are initialized 
and some are not 

• Interprocedural initialization with initialization 
occurring in a different function. 

 
Factors like complex data types, global array vari-
ables, partial initialization, and the need for interpro-
cedural analysis make detection of uninitialized use of 
array elements technically difficult for static analysis 
tools. Klocwork promises to provide a phased solution 
over the next couple of releases.    
 

Language Number of 
SAMATE Tests 

Number of Motorola 
Rules Covered 

C 1677 13 

C++ 88 4 

Java 33 0 

Table-2: SAMATE Testcases and Motorola Coding Standard 
Rules. 

The inability to identify uninitialized array elements 
was the root cause for issues identified in field testing 
of some of Motorola products.  The initial response 
from Klocwork, after reporting this problem, triggered 
the assessment of other popular security static analysis 
tools with Klocwork.  As the intention of this paper is 
to create improvement in all security static analysis 
tools, the names of the other tools will be referenced 
here as Tool X, Tool Y, and Tool Z. Table-3 shows 
the comparison of these other tools with the Motorola 
developed testcases as the basis for comparison.  The 
first column represents the programming language 
evaluated.  The second column provides the total 

number of security rules including subrules.  The third 
column provides the Klocwork results for release 7.5. 
    

Lang-
uage 

Number 
of Secu-

rity Rules 

Kloc
work 
7.5 

Tool 
X 

Tool 
Y 

Tool 
Z 

C 39 22 7 7 5 

C++ 34 19 0 1 1 

Java 16 13 2 1 0 

Table-3: Support for Motorola Security Rules in Static Analysis 
Tools. 

The last three columns show the results from three 
well known security static analysis tools.  Detailed 
results for this benchmarking activity can be found in 
Appendix A for C, Appendix B for Java, and Appen-
dix C for C++. Because none of the positive test cases 
detected any false positives in this activity, this paper 
does not elaborate further.  

Observations: 
• Klocwork is significantly better supporting 

the security rules in the Motorola Coding 
standards due to the collaboration. 

• Our partnership with Klocwork has been a 
major factor in the support to these security 
rules in their tool suite. 

• Support for detecting uninitialized use of ar-
ray elements is weak in the major static 
analysis tools for security.  Tool X and 
Klocwork could handle detection of unini-
tialized use of array elements of simple data 
types.  These tools, however, suggest that if a 
single element of the array is initialized, then 
the entire array is considered to be initialized.  
Obviously, there is room for improvement. 

• None of the tools address detection of com-
plex, global, or interprocedural uninitialized 
array variables. 

• All the tools detected basic buffer overflow 
and format string vulnerabilities 
 

Please note that by combining the information in table 
1 and table 3, Klocwork identified more of the secu-
rity rules than the other tools even prior to Motorola’s 
engagement with them.    The significance of this ac-
tivity is that one must be aware of the relevant secu-
rity rules applying to their domain before engaging 
any static analysis tool.  This engagement is not suffi-
cient with simple tool usage but must be significantly 
extended for product security.  Most of the static 
analysis tools support extension capability, and the 
tools X, Y, Z also support extensions. Since Klocwork 



fared better in comparison with the other tools, the 
extension capability of the other tools was not studied 
in depth. 

 

Opportunities 

In Motorola’s experience, use of static analysis tools 
has helped identify and correct a significant number of 
vulnerabilities in the coding phase.   However, beyond 
the coverage of test cases indicated in this paper, there 
remain some opportunities for improvement for static 
analysis tools.   The first opportunity is the consider-
able analysis required to prune the outputs of false 
positives.  While all of the tools allow some means to 
minimize the effect, more effort is required.  Sec-
ondly, the implementation of the checkers is typically 
example driven.  As a result, the checker implementa-
tion can be only as complete as the set of examples. 
This creates the potential for false negatives.   Finally, 
even though a relatively large range of memory re-
lated errors including memory leaks are reported by 
static analysis tools, there is still a need to run dy-
namic analysis tools for things like memory leak de-
tection [3].  It would be a great benefit, if there could 
be improved techniques for memory leak detection 
and other memory related errors in static analysis 
tools.  This type of capability could save a lot of time, 
effort and cost for software development organiza-
tions. Even the creation of an exhaustive test suite of 
memory related errors with a comparison of the popu-
lar static and dynamic analysis tools ability to detect 
all the different types of memory errors would be a 
big step forward. 

In one open source code implementation of the https 
protocol, three high severity errors were identified in 
the original code and 17 high severity errors were 
identified in internally modified code.  These errors 
related to security were detected, by running the code 
through Klocwork Inforce tool with the security op-
tions enabled.   This example demonstrates the need 
for usage of such a tool for third party software as 
well as for internally developed software. 

Recommendation 

The paper thus far may read as a white paper for 
Klocwork.    The value of this paper is in the approach 
used to make the software developed within our or-
ganizations better from both a quality and security 
perspective.   First of all, it is important for an organi-
zation to take responsibility for the security of its 
software instead of relying on external security 
mechanisms.  Secondly, in response to a significant 
number of security vulnerabilities in the coding phase, 
it is highly recommended to identify coding standards 

for the organization to follow.  These coding stan-
dards can be reinforced through training and inspec-
tion.  However, to optimize the return from these 
coding standards, they should be automated where 
possible.   Our experience demonstrates that the com-
mercial static analysis tools are lacking in a number of 
important security areas.  It is absolutely necessary for 
people to own the security requirements for their static 
analysis tools and work with the vendor to enhance 
the capabilities.  The tools lag the known concepts 
behind secure practices.   Finally, one has to combine 
automated methods with manual methods such as in-
spection to capture as many of the errors as possible. 

Conclusion 

In this paper, the Motorola experience and approach 
in bringing a security focus to the coding phase has 
been shared, especially the use of static analysis tools 
for security. External experts in the security field were 
engaged for training and process enrichment.  In par-
ticular, the coding standards were enhanced with se-
curity rules. After implementing the security enhanced 
coding standards, supporting these new standards in a 
static analysis tool became a major focus area.   A 
majority of project teams in Motorola were already 
using the Klocwork tools for quality, which was a 
major factor in our use of this particular tool. How-
ever, a good percentage of these security rules were 
not detected by the tool.  The vendor agreed to work 
with Motorola to improve the detection of violations 
to the security rules in the code and the related work 
has been described in this paper.    The results from a 
couple of benchmarking exercises are also presented.   
A test suite published from MIT on buffer overflow, 
was used to identify and close the identified gaps in 
the Klocwork Inforce tool. In another study reported 
in this paper, popular static analysis tools were evalu-
ated based on their support for the security rules in the 
Motorola coding standards. Based on this experience 
with static analysis tools, several opportunities for 
improvement in use of this technology were identi-
fied. 
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Appendix A 
C Secure Coding 

Standard 
Test 
Case 

KW 
6.1 

KW 
7.5 

X Y Z 

Memory Allocation 
Check 

1 X X X   

“Large” Arrays 
Flagged 

2 X EC   X 

Access control for 
sensitive variables 

  EC    

Special characters in 
filenames or vari-
ables 

4 X EC    

Safe directories for 
file access 

  EC    

Check permissions 
prior to access file-
names 

18  EC  X  

User rights checked 
for file access 

  EC    

Null termination of 
string buffers 

12  X    

Check return codes 
of library functions 

5  EC  X  

%n substitution 15  EC    

Reference uninitial-
ized variable 

6 X X   X 

Unsafe library func-
tions 

7 X X X X X 

Check variable 
lengths in unsafe 
functions 

19 X X X X  

Integer Overflow       

For addition and 
multiplication, result 
should not exceed 
operands 

9      

Expressions as func-
tion call parameters 

20  EC    

Buffer Overflow 10 X X X X X 

Element references 
within array bounds 

11 X X X  X 

X indicates the coding standard is covered in the 
native code.  EC indicates that the coding stan-
dard is covered partially or completely by an ex-
tensibility checker. 

 



C Secure Coding 
Standard, continued 

Test 
Case 

KW 
6.1 

KW 
7.5 

X Y Z 

String manipulation 
arrays are null ter-
minated 

12  X X X  

Externally provided 
strings not to be 
used in format string 

13  EC X X X 

%s for printf 14  X    

 

X indicates the coding standard is covered in the na-
tive code.  EC indicates that the coding standard is 
covered partially or completely by an extensibility 
checker. 

 

Appendix B 
Java Secure Coding 

Standard 
Test 
Case 

KW 
6.1 

KW 
7.5 

X Y Z 

Restrictive Security 
Policy 

  X    

Secure Class Loader  X X    

Initialization of Ob-
jects 

3 X X    

Private classes, 
methods, variables 

4 X X    

Finalized classes and 
methods 

5 X X    

Class Cloning 7 X X X   

Serialization 8  X    

Undeserializeable 
Classes 

9  X    

Static Field Vari-
ables 

10 X X    

Inner Classes and 
sensitive data  

11  X    

Arrays and Strings 
with sensitive data 

13      

Random Number 
Generator 

14 X X X X  

Class Comparison 
by Name 

15 X X    

 

Appendix C 
C++ Secure Coding 

Standard 
Test 
Case 

KW 
6.1 

KW 
7.5 

X Y Z 

Object Memory Allo-
cation Check 

1  EC    

I/O Streams in C-style 
strings 

2  X    

C-style strings 3  EC    

Conversion to C-style 
strings 

4  EC    

Throw/ “New” Opera-
tor 

5  EC    

Initialize primitive 
types 

6 X X   X 

Array Initialization 7 X X    

Deleting with void 
pointers and objects 
w/children 

9  EC    

Non-primitive array 
manipulation 

  EC    

Object Slicing` 10  EC    

Pointer casting 11      

C-style casting and 
static _cast 

12a,b      

Delete[] for array 8      

Array  use vectors 14  EC    

Safe accessor methods 15  EC    

Virtual destructor of 
base, polymorphic 
classes 

17      

Auto pointers 31  EC    

Public method checks 
arguments 

21      

Static member vari-
ables 

22  EC    

Pointers to temporary 
objects 

23  EC    

Exception handling 24  EC    

Exceptions throw 
objects and not point-
ers 

26  EC    

Catch exceptions 27  EC    

Unhandled exceptions 28  EC    
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Abstract 
 

This paper describes an evaluation of static source 
code analyzers. The purpose of the evaluation was to 
determine their adequacy for use in developing real-
time embedded software for aviation electronics where 
the use of development tools and methods is controlled 
by a federal regulatory agency. It describes the 
motivation for the evaluation, results, and conclusions.   
 
1. Introduction 
 
Business issues motivate avionics developers to 
accelerate software development using whatever tools 
and methods will reduce cycle time. At the same time 
the FAA requires that all software development tools 
and methods comply with RTCA DO-178B, which 
requires disciplined and rigorous processes that can 
also be time consuming and expensive. Source code 
reviews and structural coverage testing, for example, 
are both required, and both typically involve 
considerable manual effort. An obvious solution within 
the faster-cheaper-better spiral of continuous 
development improvement is automation: perform the 
required analysis, testing, and documentation using 
tools that replace inconsistent and expensive human 
actions with consistent and (comparatively) cheap 
machine actions.  

A static source code analyzer is an example. 
Potentially, it could replace manual source code 
reviews, some of the structural coverage testing, 
enforce compliance with a project coding standard, and 
produce some of the required documentation. In 
addition, by eliminating a large number of latent errors 
earlier in the development cycle, it could significantly 
reduce down stream activities like unit, integration, 
and system test. The number of errors a static analyzer 
has found in open source software provides anecdotal 
support for this last possibility [8].  

However, the use of a static analyzer for avionics 
development encounters an issue that standard desktop 
development typically does not. The development 

process, tools, and qualification plans as described in 
the Plan for Software Aspects of Certification (RTCA 
DO-178B, paragraph 11.1), or its referenced plans, 
must be approved by the FAA’s Designated 
Engineering Representative. To be cost effective, static 
analysis tools might have to be accurate enough and 
cover a broad enough spectrum of errors that the FAA 
would allow their use to replace manual analysis: if 
full manual analysis is still required, the amount of 
effort its use eliminates may not be large enough to 
justify its acquisition and usage costs.  

In addition, some appeared to scale poorly, some 
appeared to have high false positive rates, some 
seemed to have ambiguous error annunciation markers, 
and some appeared to integrate poorly into common 
development environments. These issues could 
significantly reduce any benefit resulting from use.   

This paper describes an internal evaluation of static 
source code analyzers. It had 3 objectives: to 
determine if static source code analyzers have become 
cost effective for avionics software development; to 
determine if they can be qualified to reduce software 
developers verification work-load; and to determine 
conditions under which avionics software developers 
might use them. There was no effort to determine 
down-select candidates or a source-selection candidate, 
nor was there any effort to achieve statistically 
significant results. It provided input to a decision gate 
in advance of a proposed pilot project.  

In addition, it relied on software subject to 
publication restriction and on information subject to 
proprietary information exchange agreements. As a 
result, neither product names nor vendor names are 
identified. Information that could imply product or 
vendor has been withheld. 

 
2. Background and Scope 
 
2.1 Effectiveness 

 
One concern over the use of a static analyzer was 

whether it could reduce down-stream development 
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costs by reducing rework: whether tools can detect 
kinds of errors and quantities of errors that manual 
code reviews typically do not, that typically escape 
into downstream development and maintenance 
phases.  

Another concern was whether they could reduce the 
cost of compliance with verification standards by 
automating manual source code reviews, or parts of 
them. If a static analyzer could be qualified against 
specific classes of errors (e.g., stack usage, arithmetic 
overflow, resource contention, and so on) and shown 
accurate above some minimum threshold, then it might 
be possible to eliminate those error classes from the 
manual reviews. Instead, an artifact could be submitted 
demonstrating that the check for those error classes 
was performed automatically by a qualified tool. Error 
classes not included in the tool qualification would still 
be subject to manual review.  

A final concern was whether the use of an 
unqualified static analyzer as a supplement to a manual 
review would increase the number of downstream 
errors. If a static analyzer is effective against some 
kinds of errors but not others – e.g., catches pointer 
errors but not arithmetic overflows – this could be the 
case. Code reviewers could assume static analyzers are 
equally effective against all classes of errors, and 
minimize the effort they put into the manual analysis. 
 
2.2 Scope 

 
Time and resources did not allow for a 

determination of average number of errors detected by 
manual source code review versus those detected by a 
static analyzer. There is enough anecdotal evidence of 
errors escaping manual review into the test phase to 
suggest that a static analyzer will typically detect 
quantities of errors within a targeted error category that 
manual review will not. A comparison of effectiveness 
between manual and automated analysis limited to the 
error categories within which a given tool was 
designed to operate is a logical next step. 

Currently, vendors advertise software security and 
software assurance capabilities. Security in the static 
analysis context appears to signify resistance to cyber 
attack and focuses on detection and elimination of 
errors that in the past have frequently been exploited to 
deny or corrupt service (e.g., buffer overflow). 
Assurance appears to signify the detection of the broad 
band of unintended latent errors whose detection in the 
real-time embedded context is the subject of source 
code walkthroughs and structural analysis testing. 
There appeared to be no error set that could distinguish 
assurance from security, nor did there appear to be 

separate static analysis products exclusive to assurance 
versus security. The focus of this evaluation was 
software assurance.  

.  
3. Method  
 

The evaluation included 18 different static source 
code analyzers. Because of resource constraints only 6 
were evaluated in house. There are, however, 
published comparative evaluations, and these were 
used as a supplement. The criteria chosen for the 
internal evaluations are common with most of the 
published evaluations.   

To account for differences in standards across the 
different reviewers, results were normalized. Tools 
evaluated by more than a single source provided scale 
calibration points across the external evaluation 
sources [1-5] using the internal evaluations as the 
benchmark.   

Some vendors do not provide evaluation licenses. 
As a consequence, some of the in-house evaluations 
were the result of vendor-performed demonstrations. 
Some were the result of web-based demonstrations 
hosted on the vendor’s web site. In these cases vendors 
provided some of the performance data, but some of it 
resulted from interpolating available results (e.g., if the 
tool provided buffer overflow detection for a standard 
data type, then with confirmation from the vendor, it 
was assumed the tool provided buffer overflow 
detection for all standard data types). 
 
4. Evaluation Criteria and Methodology  
 

Based on input from developers, engineering 
managers, and program managers, the criteria used for 
the evaluation were analysis accuracy, remediation 
advice, false positive suppression, rule extension, user 
interface, and ease of integration with an Integrated 
Development Environment (IDE - e.g., Eclipse). 
Analysis accuracy consisted of the detection rate for 
true positive (correctly detected errors), true negative 
(correctly detected absence of errors), false positive 
(incorrectly detected errors), and false negative 
(incorrectly detected absence of errors). Remediation 
advice is the information the tool provides when 
detecting an error – information that allows the 
developer to better understand the error and better 
understand how to eliminate it. False positive 
suppression is a measure of how easy it is to suppress 
redundant error, warning, and information messages or 
the extent to which a tool allows suppression. Rule 
extension is a measure of the extent to which the tool 
allows for the addition of error or conformance checks 



and how easily this is done. The user interface is a 
measure of how easy it was to learn to use the tool and 
how easy it was to perform common tasks. Price was 
not included, primarily because vendor prices vary 
greatly depending on quantity, other purchased 
products, and marketing strategy.  

The evaluation criteria were weighted. Potential 
users and their management felt analysis accuracy was 
the most important tool attribute so its weight was 
arbitrarily set at twice that of both remediation advice 
and false-positive suppression, and 3 times that of IDE 
integration and user interface. Based on developer 
input, the importance of rule extensibility was 
arbitrarily set at half that of IDE integration and user 
interface. Internal evaluations used a 3 point scale, 
where 3 was best and 0 indicated the absence of a 
capability. The published comparative evaluations 
each used a different scoring mechanism. Their results 
were normalized.  

To the extent vendors provided evaluation licenses, 
analysis accuracy was measured using a small subset 
of the NIST SAMATE Reference Dataset (SRD) test 
cases [10]. Additional test cases were created to fill 
gaps (e.g., tests for infinite loops). Evaluations were 
limited to 6 general error categories: looping, numeric, 
pointer, range, resource management (e.g., 
initialization), and type. In all, 90 test cases were used. 
Both the downloaded test cases as well as those written 
for this evaluation were written in C to run on a Wintel 
platform against the MinGW 3.1.0 gcc compiler.  

Some vendors provided in-house demonstrations 
but were reluctant to analyze small code segments, 
preferring to demonstrate effectiveness against large 
systems or subsystems (i.e., > 500KSLOC). In those 
cases the evaluation team interviewed technical staff 
from the tool supplier to determine capability against 
specific error classes. 

The group at MIT and MIT’s Lincoln Lab 
evaluated 5 tools against a set of test cases that were 
subsequently submitted to the NIST for inclusion in 
the SRD. The DRDC evaluated tools against test cases 
that also were submitted to the NIST for inclusion in 
the SRD. In the case of the other published 
evaluations, the basis for the accuracy evaluation is 
unknown.  
 
5. Results 
 

The results of the evaluation are these: For C and 
C++, some static analyzers are cost effective; none of 
those evaluated could be qualified as a replacement for 
manual activities like source code reviews (and may 
even be detrimental as a supplement to them) or for 

structural coverage testing; but if used prudently, some 
can reduce the cost of implementation (code, test).   

In general all evaluated tools displayed significant 
deficiencies in detecting source code errors against 
some of the error categories. Determining false 
negative thresholds of acceptability against the 
different error categories and then determining each 
tool’s areas of acceptable strength and unacceptable 
weakness is a logical next step, but was outside the 
scope of this effort.  

On the basis of performance against the criteria, 
tools fell into two tiers. Only two of the evaluated tools 
had good scores for analysis accuracy, user interface, 
remediation advice, and false positive suppression. In 
both cases rule extension/addition required separate 
products. One performed poorly against arithmetic, 
type transformation, and loop errors. Both scaled well 
from very small segments of code to very large 
systems. All things considered (e.g., installation, 
learning curve) both are most effectively used for 
system or subsystem error checking within the context 
of a daily/nightly automatic build process, as opposed 
to evaluating small daily code increments in isolation. 
Both tightly coupled error detection with change 
tracking. The change tracking feature could have a 
significant near-term impact on productivity (non-
trivial learning curve) if integrated into an existing 
formal development process. 

In the second tier, several had scores that ranged 
from very good to poor for analysis accuracy, 
remediation advice, rule extension, and false positive 
suppression. Several in this tier had good scores for 
error detection but poor scores for false positive rate 
and a cumbersome false positive suppression 
capability.  Many in this tier did not scale well (up or 
down) – e.g., some of the evaluated versions crashed 
while analyzing large systems. Some had adequate 
accuracy and remediation advice once the large 
number of false positive messages was suppressed. 
Error analysis coverage is narrow compared to the two 
first tier tools – e.g., will not detect such C errors as:  
 

char a[15];  
strcpy(a, "0123456789abcdef"); 

or  
 int i = 2147483647; 
 i = i * 65536; 

or 
 int i = 0;  
 while (i < 10) 
 { 
  i = i - 1;  
 } 
  



Nearly all vendors of error detection tools also 
provide conformance checking capabilities, usually via 
separate licensing. Those that provided licenses for this 
evaluation also provided rule-set extension 
capabilities. Although conformance checking 
comparisons were not part of this evaluation, in a brief 
review, most had adequate capability. Some had 
significant advantages over others - e.g., out-of-the-
box rule set (MISRA C rule set already installed) and 
ease of extension and modification.   

Finally, static analyzers that perform inter-
procedural analysis provide capability not addressed 
by manual code reviews, which typically only address 
individual code units (e.g. single compilation units). 
The ability to detect errors resulting from the impact of 
cascading function and procedure calls is not 
realistically available to manual analysis but clearly 
advantageous, identifying errors that are usually 
detected during system test or operational test. It was 
convenient to run this kind of static analyzer as a part 
of the automatic system build.   
 
6. Conclusions  
 

Static analysis can cost-effectively reduce rework 
(detecting defects before they escape into downstream 
development phases or into delivered products) but 
currently cannot replace manual source code reviews. 
In general, they need better error detection accuracy 
and broader coverage across error classes. 
 
6.1 Cost Effective Reduction of Rework 

 
Some static analyzers – those with broad coverage 

and high accuracy – are simple enough to use and are 
accurate enough that downstream cost avoidance 
exceeds cost of use (license cost, cost of false positive 
resolution and suppression, etc.). Tools in this category 
detect some source code errors faster and more 
effectively than manual reviews. Development teams 
can use them informally, on a daily/nightly basis, 
throughout the implementation cycle (code and 
development test) when integrated into an automated 
build process, reducing cost by reducing the quantity 
of errors that escape into development testing, and by 
reducing the number of iterations through each test 
phase (e.g., unit, integration, functional, performance). 

Static analyzers with more limited coverage and 
lower accuracy, internal demonstration of cost 
effectiveness is difficult. No one static analyzer was 
effective against very many of the error classes 
identified by the Common Weakness Enumeration [7]. 
In addition, within some error classes where detection 

capability existed, many demonstrated a high false 
negative rate against the limited number of test cases. 
Many with a low false negative rate had a high false 
positive rate. Distinguishing between true and false 
detections and suppressing the false positives was a 
significant effort. It was not clear that the less than 
optimal reduction in debugging and rework was 
enough to offset the increase in effort from false-
positive analysis and suppression. 

 
6.2 Reducing Formal Compliance Cost – 
Automated vs. Manual Analysis 

 
Of the 18 static analysis tools evaluated, none was 

designed to detect all the kinds of errors manual 
analysis detects. Therefore, none could replace manual 
analysis in a development environment regulated by an 
industry standard like DO-178B.  

Automation of a manual process like the code 
review would require qualification of the static 
analyzer: documented demonstration of compliance 
with requirements within the target operating 
environment  to confirm the tool is at least as effective 
as the manual process it would replace (e.g., RTCA 
DO-178B, paragraph 12.2.2).  

Currently, this would be difficult given the 
evolving status of the existing government and 
industry resources, and the absence of performance 
requirements. If an industry standard defined error 
categories (e.g., Common Weakness Enumeration), 
defined tests by which static analyzers could be 
evaluated against those categories (e.g., SAMATE 
Reference Dataset), and defined performance 
requirements against those tests (e.g., less than 1% 
false negative rate), compliant static analyzers might 
be able to eliminate manual review within targeted 
categories. Manual reviews would still be required, but 
detection of qualified error categories could be 
eliminated from them.     

It is unclear that the size of the current safety-
critical market is large enough to motivate the tool 
developer’s investment in qualification. Over time, 
however, resolving the cost of tool qualification could 
follow the same path as code coverage tools, where the 
tool developer now sells the deliverable qualification 
package or sells a qualification kit from which the user 
produces the qualification package. It is also possible, 
if individual tools achieve broad enough error 
coverage and high enough accuracy, that a user (or 
possibly a user consortium) may be motivated to 
qualify it. Qualification by a government-authorized 
lab could also become cost effective for either the tool 
developer or the tool user. 



 
6.3 Potential for Increasing Rework Cost  

 
There is resistance to using existing static analyzers 

as a supplement to manual source code reviews [6]. 
The National Academy of Sciences established the 
Committee on Certifiably Dependable Software 
Systems to determine the current state of certification 
in the dependable systems domain, with the goal of 
recommending areas for improvement. Its interim 
report contained a caution against tools that automated 
software development in the safety-critical context:   
 

“…processes such as those recommended in DO-
178B have collateral impact, because even though 
they fail to address many important aspects of a 
critical development, they force attention to detail 
and self-reflection on the part of engineers, which 
results in the discovery and elimination of flaws 
beyond the purview of the process itself. Increasing 
automation and over-reliance on tools may actually 
jeopardize such collateral impact.”[6]  
 
Given that all evaluated tools exhibited major 

failures against some error categories, reducing the 
effort that goes into the manual review would lead to 
an increase in errors found during the test phase and an 
increase in errors found in delivered products. For that 
reason, many of the FAA’s Designated Engineering 
Representatives are reluctant to approve the use of a 
static analyzer even as a supplement to manual 
analysis.  

Until tools exhibit broader coverage and greater 
accuracy, their use for any aspect of the formal source 
code review process (RTCA DO-178B, paragraph 
6.3.4.f) is probably premature. 
 
6.4 Automating Conformance Checking  
 

If conformance checking is the primary concern, 
and error detection a secondary issue, any of the 
evaluated tools would perform adequately without 
additional functional or performance capability. Some 
are easier to use out of the box than others, but all 
significantly reduce the effort of achieving 
conformance with a coding standard.     
 
6.5 Automating Non-Critical Error Detection  
 
In environments where cost is the driving factor and 
there are no tool qualification issues (e.g., there is no 
false negative rate requirement), any of the low-end 
tools could be used without additional functional or 

performance capability. They can be simple to acquire 
and simple to install, with an intuitive interface. If it is 
open-source or inexpensive (e.g., less than $500 
acquisition fee per user with a 20% per year recurring 
fee) and easy to use, demonstrating that it catches 
some of the common implementation errors that 
typically escape into the integration and test phases 
(e.g., uninitialized stack variable, buffer overflow) may 
be enough to justify usage cost (false positive 
suppression, learning curve, modification of standard 
development process, etc.).  
In a development environment where there is no 
previous experience with static analysis, using a low-
end tool to demonstrate the cost effectiveness of the 
technology could be a means of subsequently 
justifying the upgrade to a more expensive and more 
capable high-end tool.  
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ABSTRACT 
This paper is a status update on the Common Weakness Enu-
meration (CWE) initiative [1], one of the efforts focused on 
improving the utility and effectiveness of code-based security 
assessment technology.  As hoped, the CWE initiative has helped 
to dramatically accelerate the use of tool-based assurance argu-
ments in reviewing software systems for security issues and 
invigorated the investigation of code implementation, design, and 
architecture issues with automation.  

1. INTRODUCTION 
As the threat from attacks against organizations shifts from the 
network, operating system, and large institutional applications to 
individual applications of all types, the need for assurance that 
each of the software products we acquire or develop are free of 
known types of security weaknesses has increased. High quality 
tools and services for finding security weaknesses in code are 
maturing but still address only a portion of the suspect areas.  The 
question of which tool/service is appropriate/better for a particular 
job is hard to answer given the lack of structure and definition in 
the software product assessment industry.  

As reported last year [2], there are several ongoing efforts work-
ing to resolve some of these shortcomings, including the Depart-
ment of Homeland Security (DHS) National Cyber Security Divi-
sion (NCSD) sponsored Software Assurance Metrics and Tool 
Evaluation (SAMATE) project [3] being led by the National In-
stitute of Standards and Technology (NIST) and the Object Man-
agement Group (OMG) Software Assurance (SwA) Special Inter-
est Group (SIG) [4].   

Since that time, there has been related work started by the Other 
Working Group on Vulnerabilities (OWG-V) within the ISO/IEC 
Joint Technical Committee on Information Technology (JTC1) 
SubCommittee on Programming Languages (SC22) [5] as well as 
the new efforts at the SANS Institute to develop a national Secure 
Programming Skills Assessment (SPSA) examination [6] to help 
identify programmers knowledgeable in avoiding and correcting 
common software programming weaknesses, among others.  

While all of these efforts continue to proceed within their stated 
goals and envisioned contributions, they all depend on the exis-
tence of common description of the underlying security weak-
nesses that can lead to exploitable vulnerabilities in software. 
Without such a common description, these efforts cannot move 
forward in a meaningful fashion or be aligned and integrated with 
each other to provide strategic value.   

As stated last year, MITRE, with support from Cigital, Inc., is 
leading a large community of partners from industry, academia, 
and government to develop, review, use, and support a common 
weaknesses dictionary/encyclopedia that can be used by those 

looking for weaknesses in code, design, or architecture, those 
trying to develop secure application, as well as those teaching and 
training software developers about the code, design, or 
architecture weaknesses that they should avoid due to the security 
problems they can have on applications, systems, and networks.   

This paper will outline the various accomplishments, avenues of 
investigation, and new activities being pursued within the CWE 
initiative. 

2. COMMUNITY 
Over the last year 6 additional organizations have agreed to con-
tribute their intellectual property to the CWE initiative.  Done 
under Non-Disclosure Agreements with MITRE which allow the 
merged collection of their individual contributions to be publicly 
shared in the CWE List, AppSIC, Grammatech, Palamida, Secu-
rity Innovation, SofCheck, and SureLogic have joined the other 
13 organizations that have formally agreed to contribute. 

In addition to these sources, the CWE Community [7], numbering 
46 organizations, is now also able to leverage the work, ideas, and 
contributions of researchers at Apple, Aspect Security, Booz 
Allen Hamilton, CERIAS/Purdue University, Codescan Labs, 
James Madison University, McAfee/Foundstone, Object Man-
agement Group, PolySpace Technologies, SANS Institute, and 
Semantic Designs, as well as any other interested parties that wish 
to come forward and contribute. 

Over the next year we anticipate the formation of a formal CWE 
Editorial Board to help manage the evolution of the CWE content. 

3. UPDATES 
There were four drafts of CWE posted over the last year.  With 
Drafts 4 and 5, CWE reached 550 and 599 items respectively.  
Draft 4 saw the introduction of the CWE ID field and Draft 5 
included the introduction of predictable addresses for each CWE 
based on the CWE ID.  During this timeframe the CWE web site 
expanded to include a “News” section, an “Upcoming Events” 
section, and a “Status Report” section.  Draft 5 included additional 
details on node relations and alternate terms.  With Draft 5 the 
CWE List was provided in several formats on the web site.  
Eventually this will be expanded upon to provide style-sheet 
driven views of the same underlying CWE XML content.   

Draft 6 of CWE included a new category called “Deprecated” to 
allow duplicate CWEs to be removed by reassigning them to that 
category, which has a CWE ID but like the items it will hold, it is 
not part of totals for CWE.  So there are 627 CWE IDs assigned 
with Draft 6, but two of the older CWEs have been moved to the 
new deprecated category, which also doesn’t count in the totals 
for CWE so there are 624 unique weakness concepts, including 



structuring concepts, in CWE Draft 6.  The first formal draft of a 
schema for the core information that each CWE will have was 
finalized with Draft 6, covering the five groupings of information 
about each CWE, including “Identification”, “Descriptive”, 
“Scoping & Delimiting”, “Prescriptive”, and “Enhancing” types 
of information. 

Draft 7 of CWE represents the first recipient of material from the 
CWE Scrub, described in section 5 of this paper.  The main size 
type changes to CWE included the insertion of 7 new nodes to 
support grouping portions of CWE into additional Views and one 
CWE was deprecated.  Further details of the changes in Draft 7 
are included in the Scrubbing section of this paper. 

4. VULNERABILITY THEORY 
In parallel with the CWE content creation and as part of the Scrub 
activities, there has been considerable progress in documenting 
thoughts about the mechanics of vulnerabilities and how 
weaknesses, attacks, and environmental conditions combine to 
create exploitable vulnerabilities in software systems.  Evolving 
the initial work on this topic, covered in the Preliminary List of 
Vulnerability Examples for Researchers (PLOVER) effort [8] in 
2005, it now includes the results of working with great variety of 
issues covered in CWE.  In July 2007, the “Introduction to 
Vulnerability Theory” [9] was published along with a companion 
document “Structured CWE Descriptions” [9].  The latter, using 
terminology defined in Vulnerability Theory, provides a first 
attempt to develop consistent descriptions of a broad and diverse 
set of over 30 CWEs.  Given the many sources of information that 
CWE has combined it is important that we carefully comb through 
CWE to clarify and harmonize the use of terms and concepts.  
Another use of the terminology in Vulnerability Theory has been 
in annotating exemplar code.  While common practice, the use of 
code snippets to show incorrect coding constructs is often hard to 
comprehend.  The labeling of the individual artifacts within the 
code that are involved in a weakness shows great promise.  For 
example, Figure 1 shows a code snippet that can be used to 
demonstrate three different types of CWEs, Cross-Site Scripting 
(79), Directory Traversal (22), and Unbounded Transfer (‘classic 
overflow’) (120). 

 
Figure 1: Code Example for CWEs 79, 22, and 120. 

But without additional guidance it is difficult to identify the actual 
problem areas.  Figure 2, specifying the line numbers involved in 
the different Vulnerability Theory concepts makes the discussion 
more precise by labeling the artifact concepts.  

 

 

 

Figure 2:  Vulnerability Theory Artifact Labels for Code Example 

5. SCRUBBING 
The latest update to CWE included materials resulting from the 
“Scrubbing of CWE”.  As mentioned earlier, CWE has material 
from many sources and covers a very wide range of concepts from 
a variety of perspectives and with varying levels of abstraction.  
Additionally, the software security industry has a long tradition of 
mixing together discussions of weaknesses, attacks, and results of 
exploited vulnerabilities that need to be addressed.  Confronting 
these issues before CWE gets any larger is the purpose of the 
“CWE scrub”.   

Resolving the mixed language issues blending description of 
weaknesses and attacks will involve two primary actions. The first 
is a rewriting of attack-centric language to clearly describe the 
underlying weakness that the attack is targeting. The second ac-
tion will be an integration of related attack pattern references into 
the CWE schema and content such that the CWE can be effec-
tively aligned to the Common Attack Pattern Enumeration and 
Classification (CAPEC) [10]. This part of the scrub effort is still 
in progress but it will not only improve clarity and consistency of 
the CWE weaknesses descriptions but will also add significant 
value to them by placing them within the context of how they are 
likely to be attacked. 

Draft 7 includes over 800 major and minor changes due to the 
scrub.  Examples of the changes include consistent naming 
conventions and spell checking at one end and revisiting the 
descriptions, relationships, context notes, and examples on the 
other.  A detailed delta report capturing the change between Draft 
6 and Draft 7 will be available on the CWE web site. 

In addition to the above items, our study of the concepts captured 
in CWE has led us to identifying additional ways of capturing and 
describing the mechanics of the weaknesses, as described in Sec-
tion 4.  Two examples of concepts that CWE needs to be able to 
capture include series of weaknesses and simultaneous weak-
nesses.  Figure 3 illustrates a series of weaknesses could be 
something like how an incorrect range check allows an integer 
overflow to occur which then leads to insufficient memory 
allocation which allows a heap overflow that could lead to code 
execution or a memory corruption induced crash.  A simultaneous 
set of weaknesses could be an incorrect input cleansing, along 
with a guessable file name/path, and incorrect permissions that 
allows an attacker to download a sensitive file.  CWE needs to be 



able to capture both of these types of situations within the XML 
data about the different weaknesses. 

 

Figure 3: A Weakness Series 

Another area that needs to be addressed in the CWE Scrub is the 
levels of abstraction CWE will support.  In Draft 6 there were 466 
CWEs that have no child nodes and are thought to be lowest-level 
concepts of a weakness (referred to as a vulnerability type).  
However, there are 44 other nodes that many consider to be low-
est-level vulnerability types yet they have child nodes in CWE.  
Some of the lowest level concept child nodes are things that a 
static code analysis would not be able to recognize yet a dynamic 
code testing approach would. Additionally it would appear that 
these low level child nodes would be helpful concepts for  
developers, testers, and project managers to understand, make use 
of, and work with.  So maybe the different uses of CWE should be 
supported by an ability to project parts of CWE and CWE needs a 
“sub-type” concept for these items?  Similar issues surround the 
categories that CWE uses to explain hierarchical relationships 
amongst CWE items.  There are currently 105 categories with 
child nodes associated to them.  However there are another 9 
categories that have no child nodes currently.  Linking these 
categories to the appropriate child nodes or creating new child 
nodes is another topic of the CWE scrub. 

To support the scrub activity and the ongoing review and 
enhancement of CWE a publicly archived CWE-RESEARCH-
LIST has been set up and appropriate software security 
researchers were invited to sign-up. At the writing of this paper 
there are over a hundred subscribers already but everyone 
interested in the direction and evolution of CWE is encouraged to 
join the list and participate.  Similarly a Research area has been 
established on the CWE web site with background information 
about the current and evolving ideas for scrubbing CWE as well 
as Use Cases and Stakeholder analysis. 

6. COMPATIBILITY & EFFECTIVENESS 
About a month after Draft 5 of CWE was posted the CWE Com-
patibility and Effectiveness Program was announced. CWE 
Compatibility is focused on the correct use of CWE Ids by tools 
and services while CWE Effectiveness is focused on determining 
which tools and services are effective in finding specific CWEs.  
The CWE Compatibility and Effectiveness Program [11] provides 
for a product or service to be reviewed and registered as officially 
"CWE-Compatible" and "CWE-Effective," thereby assisting or-
ganizations in their selection and evaluation of tools and/or serv-
ices for assessing their acquired software for known types of 
weaknesses and flaws, for learning about the various weaknesses 
and their possible impact, or to obtain training and education 
about these issues.  Detailed requirements defining CWE 
Compatibility and Effectiveness can be found on the CWE web 
site. 

Currently, 12 organizations have declared that a total of 22 prod-
ucts & services are or will be CWE Compatible.  This includes 
capabilities from Fortify Software, GrammaTech Inc., Armorize 
Technologies Inc., Klocwork Inc., CERIAS/Purdue University, 
Cigital Inc., SofCheck Inc., HP/SPI Dynamics, Ounce Labs, 
SANS Institute, Veracode Inc., and IBM/Watchfire.  For a current 
list of CWE Compatibility see the CWE web site. 

7. OUTREACH AND EDUCATION 
A key component of any standardization effort that will be 
adopted and used by organizations is educating and informing all 
types of people about the effort, its motivation, plans, and po-
tential impacts.  Otherwise the standard may become an academic 
exercise that was never challenged to deal with practical usage 
cases by tool developers or users.  The feedback from knowledge-
able sources and the criticism/suggestions from those deeply 
involved and/or invested in the technologies, problems, or 
processes involved in an area being standardized is critical to 
identifying and rectifying any gaps or disconnects.   

For the CWE initiative the Software Assurance Working Group 
meetings and Forums, co-sponsored by the Department of De-
fense (DoD) and the DHS, have been a major source of this type 
of interaction.  Additionally, CWE has been presented in talks and 
discussions at conferences and workshops like the Tactical IA 
Conference, the InfoSecWorld Conference, the RSA Conference, 
the OMG Software Assurance Workshop, the main Black Hat 
Conference and the Black Hat D.C. Conference, the Defense In-
telligence Agency Software Assurance Workshop, the GFIRST 
Conference, the Software and Systems Technology Conference, 
along with the IA in the Pacific Conference, and the AusCERT 
2007 Conference.   

Additionally, a paper on CWE was published for Black Hat D.C. 
[12] and an article was written for CrossTalk Magazine, the Jour-
nal of Defense Software Engineering [13]. 

8. CURRENT THOUGHTS ON IMPACT 
AND TRANSITION OPPORTUNITIES 
As stated in the original concept paper that laid out the case for 
developing the CWE List [14], the completion of this effort will 
yield consequences of three types: direct impact and value, align-
ment with and support of other existing efforts, and enabling of 
new follow-on efforts to provide value that is not currently being 
pursued.  Steady progress is being made to address and leverage 
each of the opportunities identified in that document.  

Additionally, there have been three areas where CWE has been 
adopted fairly early that have great promise for spreading knowl-
edge of CWE very quickly.  The first is the use of CWE as a stan-
dard reference in the Open Web Application Security Project 
(OWASP) Top Ten Most Critical Web Application Security Vul-
nerabilities 2007 [15], the second is the creation and distribution 
by the SANS Institute, of a SANS CWE Poster, shown in draft 
form in Figure 4, and the third is the inclusion of CWE identifiers 
in the National Vulnerability Database (NVD) [16], shown in 
Figure 5, as refinement of the Vulnerability Type information they 
provide for publicly known vulnerabilities in packaged software. 

 



 

Figure 4: Draft of SANS CWE Poster. 

 

Figure 5: NVD Use Of CWE. 

Leveraging of the OMG technologies to articulate formal, ma-
chine parsable definitions of the CWEs to support analysis of 
applications within the OMG standards-based tools and models is 
continuing through an effort to create formalized CWE defini-
tions.  This effort, in conjunction with OMG standards-based 
modeling and automated code generation from models efforts and 
the NIST SAMATE Reference Dataset repositories creation con-
tinue to move forward and should create some very promising 
results. Any tool/service capability measurement framework that 
uses the tests provided by the SAMATE Reference Dataset will be 
able to leverage the common weakness dictionary as the core 
layer of the framework. 

Through all of these activities, CWE continues to help shape and 
mature the code security assessment industry, and dramatically 
accelerate the use and utility of these capabilities for organizations 
and the software systems they acquire, develop, and use. 
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ABSTRACT
Static analysis by Abstract Interpretation is a promising way
for conducting formal verification of large software appli-
cations. In spite of recent successes in the verification of
aerospace codes, this approach has limited industrial appli-
cability due to the level of expertise required to engineer
static analyzers. In this paper we investigate a pragmatic
approach that consists of focusing on the most critical com-
ponents of the application first. In this approach the user
provides a description of the usage of functionalities in the
critical component via a simple specification language, which
is used to drive a fully automated static analysis engine. We
present experimental results of the application of this ap-
proach to the verification of absence of buffer overflows in a
critical library of the OpenSSH distribution.

Categories and Subject Descriptors
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Mechanical
Verification

Keywords
Static analysis, abstract interpretation, formal verification,
buffer overflow

1. INTRODUCTION
The term static analysis is most often employed for denoting
the detection of software errors or vulnerabilities by auto-
matic inspection of source code. Static analysis tools in this
category–like those commercialized by Coverity [1] or Kloc-
work [2] to name a few–have become increasingly popular
among developers and enjoy widespread use in the software
industry. However, this form of static analysis can only point
to defects in the code but does not guarantee that all have

∗This work was funded by the OSD SBIR contract FA8750-
06-C-0146.

been found, even if only a single class of defects is considered,
like buffer overflows. A static analysis technology called Ab-
stract Interpretation [8, 9] can make stronger claims for cer-
tain classes of software defects. The validity of such claims is
backed by a rigorous mathematical theory underpinning the
implementation of the static analyzer. Decidability issues
are avoided by allowing the analyzer to give indeterminate
results. These indeterminates are mere false positive most of
the time but may also point to a real problem. The effective-
ness of a static analyzer based on Abstract Interpretation is
measured by its precision i.e., the ratio of false positives in
the analyzer’s output. A static analyzer that does not yield
any false positive provides high assurance that the code is
free of a certain class of defects.

Using static analysis to perform formal software verification
sounds attractive at first: there is no need to build a model
of the application, the verification process is fully automated
and is conducted on the very code that will run on the target
platform. However, the reality is somewhat disappointing.
In order to achieve formal verification, the number of false
positives produced by the analyzer must be zero or at least
very small. Reaching this level of precision on real software
systems requires (1) a substantial amount of work tuning
the analysis engine, and (2) an excellent knowledge of the
context in which the application operates (input parameters,
sensor data, interruptions, etc.). For example, the design of
the ASTREE static analyzer [5, 10], which has been used to
verify the correctness of floating-point arithmetic in the elec-
tric flight control code of the Airbus A380, monopolized the
attention of six world-class experts in Abstract Interpreta-
tion during a couple of years. Getting rid of all false positives
required devising highly sophisticated algorithms to handle
the unique characteristics of this code e.g., a domain of ellip-
soids to analyze linear digital filters [5] and a representation
of inequalities for floating-point variables [12].

However, some false positives cannot be removed by just im-
proving the analysis engine, since they require information
on the operating environment of the program that is not
present in the code. For example, in our past experience we
had to analyze the attitude control system of a satellite. The
analyzer that we were using performed well but turned up
a number of false positives that resisted all our attempts to
improve the precision of the algorithms. A careful investiga-
tion of the origin of these false positives revealed that they
were all caused by the lack of information on the variable
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Figure 1: Modeling the usage of the module through
its interface.

containing the altitude of the satellite. Simply adding the
assertion that the altitude is always positive was sufficient
to remove all remaining false positives.

This approach requires a close interaction between a group
of experts in Abstract Interpretation and a group of experts
of the application to be verified. It is difficult to imagine it
being applied to a large variety of codes. The major bottle-
neck is the availability of experts in Abstract Interpretation
who are willing to spend time on such projects. Although
it is possible to build a general-purpose static analysis tool
that exhibits good precision and performance in average–
PolySpace Verifier is an example [4]–the number of indeter-
minates will still be too high for the purpose of high assur-
ance. In this paper, we report on ongoing work for mak-
ing Abstract Interpretation-based analyzers easier to use in
practice without sacrificing too much precision. We are in-
vestigating a divide-and-conquer approach that allows ap-
plication experts to use a generic static analysis engines on
the most critical components of a software application. Our
approach is described in Sect. 2. In Sect. 3 we describe an
application of this approach to the verification of absence of
buffer overflows in a critical library of the OpenSSH distri-
bution.

2. DIVIDE-AND-CONQUER APPROACH
Abstract Interpretation is a well defined theory, which pro-
vides a systematic methodology for constructing sound static
analyzers [7]. Static analyzers obtained by a straight appli-
cation of the theoretical framework will not scale to hun-
dreds of thousands of lines of code. Engineering scalable and
sound static analyzers is extremely challenging and requires
specializing the algorithms for the application or familiy of
applications considered [13, 10]. However, if we limit the
size of the programs to be analyzed to a few thousand lines,
then it is possible to build a fairly general static analyzer
that can handle a broad spectrum of programs for a given
property (array-bound compliance, floating-point overflows,
etc.) with high precision. We propose to apply such ana-
lyzers to small critical components of software applications.
This approach is justified by the empirical observation that
many large applications consist of a collection of smaller
components. For example, in our previous work on NASA
flight-control software of Mars missions [13, 6] we observed
that the Mars Exploration Rovers mission control software
is about half a million lines of code. However, it is made
of over one hundred threads, each one acting as an indepen-
dent unit and controlling either a particular instrument (like

the high-gain antenna) or a phase in the mission (like entry-
descent-landing). The monolithic structure of the electric
flight control code of the A380, where interdependent op-
erations may spread over hundreds of thousand lines of, is
unique and mostly due to the fact that the code is automat-
ically generated from higher level specifications.

This approach is viable if an application expert with a lim-
ited grasp of static analysis can successfully use an analyzer
on a module of the application. As we previously observed,
the operational environment of the applications is important
for precision. Our approach adds another dimension to that
problem, since we are now analyzing a module and the in-
teractions between the module and the rest of the code have
to be modeled. We assume that the module comes with
a clearly defined interface. This is not an unrealistic as-
sumption. For example, all threads in the Mars Exploration
Rovers mission control software communicate using a com-
mon mechanism based on message queues, with a carefully
specified format of messages. We propose to use a domain
specific language (DSL) to model the interaction between
the module and therest of the code through its interface
as depicted in Fig. 1. The static analyzer takes as inputs
the code of the module together with the model of its en-
vironment. The DSL provides a precise formal definition of
the context in which the module is executed in a form that
is easily intelligible by the user. We are currently working
on a DSL for a family of representative program properties
verifiable by static analysis.

We have chosen the OpenSSH 4.3 application bundle [3] as
a realistic application for demonstrating the feasibility of
our approach. The applications in OpenSSH use a com-
mon buffer library for the internal storage of data transmit-
ted across the networks. This library implements dynamic
buffers that transparently grow in order to fit the data stored
therein. The buffer library is a critical component of the ap-
plication bundle that is implemented using sophisticated al-
gorithms. A buffer in OpenSSH is implemented in an object-
oriented style, using a structure that contains information
about the size of the buffer and the space available. The
buffer structure is defined as follows:

typedef struct {
u_char *buf; /* Buffer for data. */
u_int alloc; /* Number of bytes allocated for data. */
u_int offset; /* Offset of first byte containing data.*/
u_int end; /* Offset of last byte containing data. */

} Buffer;

The basic interface of the buffer library contains the follow-
ing functions:

void buffer_init(Buffer *);
void buffer_clear(Buffer *);
void buffer_free(Buffer *);

u_int buffer_len(Buffer *);
void *buffer_ptr(Buffer *);

void buffer_append(Buffer *, const void *, u_int);
void *buffer_append_space(Buffer *, u_int);



buffer_init(&buffer)

buffer_free(&buffer)

buffer_consume(&buffer, len)
req: len >= 0

buffer_append(&buffer, &data, len)
req: 0 <= len <= size(data)

Figure 2: Modeling the usage of the module through
its interface.

void buffer_get(Buffer *, void *, u_int);

void buffer_consume(Buffer *, u_int);
void buffer_consume_end(Buffer *, u_int);

void buffer_dump(Buffer *);

int buffer_get_ret(Buffer *, void *, u_int);
int buffer_consume_ret(Buffer *, u_int);
int buffer_consume_end_ret(Buffer *, u_int);

As previously described the user must supply a model of the
interactions between the module and the rest of the system
in order to enable the separate analysis of the module. The
DSL that we have designed so far for modelling operational
environments is based on state machines describing the or-
der in which the functions in the interface are used, together
with constraints on the arguments of the functions. Some
of these functions store data into the buffer that are read
from a byte array passed in the argument together with the
number of bytes to read, like in the buffer_append func-
tion. Therefore, the interface requirement for such a func-
tion guaranteeing a proper use is that the number of bytes
to read be less than or equal to the size of the byte array
to read from. We have similar interface requirements for
functions that read data from the buffer and store them in a
byte array like buffer_get. Functions of the buffer library
cannot be used in any order. A buffer must first be initial-
ized using the buffer_init function, then any of the buffer
manipulation functions can be applied in any order. The
buffer is finalized and memory disposed of properly by the
buffer_free function. Interface usage and function param-
eter requirements are illustrated in Fig. 2, where we depicted
only a few functions for the sake of clarity.

3. CASE STUDY: OPENSSH’S BUFFER LI-
BRARY

The complexity of the implementation of the buffer library
in OpenSSH comes from the fact that a buffer grows on de-
mand, depending on the size of the data that are written into
it. The growth of the buffer is controlled by the following
function:

/*
* Appends space to the buffer, expanding the buffer if
* necessary. This does not actually copy the data into
* the buffer, but instead returns a pointer to the

* allocated region.
*/

void * buffer_append_space(Buffer *buffer, u_int len)
{
u_int newlen;
void *p;

if (len > BUFFER_MAX_CHUNK)
fatal("buffer_append_space: len %u not supported",

len);

/* If the buffer is empty, start using it from the
beginning. */
if (buffer->offset == buffer->end) {
buffer->offset = 0;
buffer->end = 0;

}
restart:

/* If there is enough space to store all data, store it
now. */
if (buffer->end + len < buffer->alloc) {

p = buffer->buf + buffer->end;
buffer->end += len;
return p;

}
/*
* If the buffer is quite empty, but all data is at
* the end, move the data to the beginning and retry.
*/

if(buffer->offset > MIN(buffer->alloc, BUFFER_MAX_CHUNK))
{

memmove(buffer->buf, buffer->buf + buffer->offset,
buffer->end - buffer->offset);
buffer->end -= buffer->offset;
buffer->offset = 0;
goto restart;

}
/* Increase the size of the buffer and retry. */

newlen = buffer->alloc + len + 32768;
if (newlen > BUFFER_MAX_LEN)

fatal("buffer_append_space: alloc %u not supported",
newlen);

buffer->buf = xrealloc(buffer->buf, newlen);
buffer->alloc = newlen;
goto restart;
/* NOTREACHED */

}

This function is quite complex and uses comparisons be-
tween the size of the data to store in the buffer and the avail-
able space to reallocate a buffer sufficiently large. Buffers
are used throughout the OpenSSH distribution to store all
data communicated through the network. They are the key
data structure in the application and constitute an excellent
example for our study. We want to verify that this imple-
mentation is not prone to buffer overflows.

We have developed a generic static analyzer for buffer over-
flows using Kestrel Technology’s static analysis development
platform CodeHawk. This analyzer features an efficient im-
plementation of the polyhedral abstract domain [11] and
optimized fixpoint interation algorithms. The analyzer is
generic in the sense that it does not contain algorithms that
deal with a particular code architecture. For example, con-
sider the two following functions extracted from the buffer
library:

/* Consumes the given number of bytes
from the beginning of the buffer. */



int
buffer_consume_ret(Buffer *buffer, u_int bytes)
{

if (bytes > buffer->end - buffer->offset) {
error("buffer_consume_ret: trying to get more

bytes than in buffer");
return (-1);

}
buffer->offset += bytes;
return (0);

}

void
buffer_consume(Buffer *buffer, u_int bytes)
{

if (buffer_consume_ret(buffer, bytes) == -1)
fatal("buffer_consume: buffer error");

}

In order to analyze the code precisely, the static analy-
sis engine must be able to infer a correlation between the
return value of function buffer_consume_ret and the in-
variant bytes > buffer->end - buffer->offset. The AS-
TREE analyzer handles a similar problem by using a spe-
cial domain for finding correlations among Boolean and nu-
merical variables [10]. In our case, the analyzer performs
a sequence of interleaved forward and backward invariant
propagations that achieves the same result. This algorithm
is completely generic and may handle other forms of cor-
relations among variables that are not necessarily Boolean.
Note that this algorithm is not intended to scale to large
codes, this is not our purpose here. We rather want a precise
analyzer that can handle smaller codes with good precision
without the need of manually fine-tuning the algorithms.

The buffer library contains 162 pointer checks that represent
the safety conditions associated to each pointer operation in
the library. The analysis runs in 35 seconds and is able to
prove all 162 checks.

4. CONCLUSION
We have presented a divide-and-conquer approach that al-
lows a user who is not an expert in static analysis to conduct
formal software verification of small critical components of
an application. Our approach is not compositional, in the
sense that we do not verify the whole application by com-
bining the results of individual components. Rather, we aim
at providing a methodology and an accompanying toolset of
fully automated static analyzers for verifying the most crit-
ical components of an application. The DSL will be helpful
for saving environment models of previous analyses, in effect
enabling development of libraries for reuse and giving clues
for divide-and-conquer in other applications. We have suc-
cessfully applied our approach to the verification of a com-
plex critical module of the OpenSSH distribution. We vow
to pursue these experiments and build a larger benchmark
of open-source applications.
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L. Mauborgne, A. Miné, D. Monniaux, and X. Rival.
A static analyzer for large safety-critical software. In
Proceedings of the ACM SIGPLAN 2003 Conference
on Programming Language Design and
Implementation (PLDI’03), pages 196–207. ACM
Press, June 7–14 2003.

[6] G. Brat and A. Venet. Precise and scalable static
program analysis of NASA flight software. In
Proceedings of the 2005 IEEE Aerospace Conference,
2005.

[7] P. Cousot. The calculational design of a generic
abstract interpreter. In M. Broy and R. Steinbrüggen,
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Abstract
Static analysis has emerged in recent years as an indis-
pensable tool in software verification. Unlike deductive ap-
proaches to program verification, static analysis can only
prove simple properties. Moreover, the myriad of static anal-
ysis tools employ specific techniques that target specific
properties of specific programs. Static analysis holds the
promise of complete automation, scalability, and handling
larger classes of properties and larger classes of systems,
but a significant gap exists between such a goal and cur-
rent static analysis tools. We argue that a logical foundation
for static analysis allows the construction of more powerful
static analysis tools that are provably correct, extensible, and
interoperable, and can guarantee more complex properties of
complex systems. We address these challenges by proposing
a tool-bus architecture that allows the combination of sev-
eral static analysis tools and methods. The combination is
achieved at the logical level using decision procedures that
implement combination of theories. We discuss the applica-
tion of such ideas to binary program analysis in the context
of intrusion detection and malware analysis.

Keywords static analysis, abstract interpretation, logical
interpretation, dynamic analysis, invariant generation

1. Introduction
Our ability to apply software analysis tools is constantly
challenged by the increasing complexity of developed soft-
ware systems. Static analysis has emerged as an indispens-
able tool in software verification. Static analysis is however
at a cross road. Figure 1 illustrates how static analysis sits at
the frontier between low cost approaches to assurance such
as testing, typechecking and dynamic analysis, and more
formal and less scalable approaches such as model check-
ing and deductive approaches. We argue that static analysis
holds the promise of maintaining the advantages of low cost,
scalability and high bug coverage, while providing degrees

of correctness that are often associated with the less scalable
and more labor intensive deductive approaches.

In a recent study [13], it was shown that current state-of-
the-art static analysis tools exhibit significant shortcomings.
The study argues that static analysis tools employ a wide
range of techniques and features with varying degrees of
success making their evaluation for correctness challenging.
That is, the criteria more commonly used to evaluate tools
such as detection, accuracy, and scalability are not enough
to evaluate the degree of dependability of the target system
after analysis. It is necessary to extend static analysis tools in
order to extract from the analysis enough evidence to support
either confidence or distrust in the target’s dependability.
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Figure 1. Formal Approaches

The shortcomings of current static analysis tools are sum-
marized in the study in the following categories:

• Reliability: tools often handle specific programs and do
not deal with all of the programming languages con-
structs and the dynamic run-time environment.

• Transparency: tools do not provide capabilities for ex-
tracting evidence that the flaws discovered by a static
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analysis tool are genuine and supporting evidence on how
the flaws can be triggered.

• Flaw Detection: tools have only a partial coverage of the
space of potential flaws that can be addressed by static
analysis. Achieving high coverage require using different
tools with mixed results.

• Interoperability: tools tend to focus on one particular type
of flaws and lack an infrastructure that allows them to
share the result of their analysis.

The gap between the actual problems in practice and the
tools and approaches requires addressing these shortcom-
ings in the most general and effective way. We propose a
tool-bus architecture that addresses these challenges by ex-
ploiting recent advances in static analysis techniques [8]and
decision procedures and theorem proving [5]. Static analysis
is not a trivial task even when source code is available. It be-
comes more challenging when reasoning about applications
for which only the stripped binaries are available. We show
how such a tool-bus architecture is applied to binary static
analysis in a security context.

2. Logical Foundation for Static Analysis
Establishing the correctness of software is a computationally
intractable problem in general. Software analysis typically is
performed over a sound approximation or abstraction of the
program’s behavior. The choice of the abstraction or abstract
domain determines the class of properties that the analysis
focuses on. This approach is based on abstract interpretation
[4] a technique for approximating programs behaviors. An
abstract domain is represented by a lattice and the semantics
of the program is captured by fixed point computations in
the abstract lattice. A logical foundation for static analysis
improves static analysis in the following ways:

• Formalization of fixed point computations provides proofs
of soundness and completeness of the computation of the
given static analysis tool. Using a theorem prover such as
PVS [10], it is possible to reason about the correctness of
fixed point computations as well as the combination of
abstract domains.

• The combination of several abstract domains corresponds
to the use of the corresponding tools in conjunction.
However, In [8], it has been shown that the combina-
tion of abstract domains at the logical level, called log-
ical interpretation, provides a more precise combination
of abstract interpreters. Combining the abstract domains
is performed by combination of theories corresponding to
the abstract domains such as arithmetic and uninterpreted
functions implemented in decision procedures such as
Yices [5]. Logical theories can be used to define new
and expressive logical lattices [12]. Abstract interpreters
working over these logical lattices are constructed by us-
ing existing support for decision procedures over the cor-

responding logical theories. This support is available in
the form of Satisfiability Modulo Theory (SMT) solvers,
such as Yices. Logical lattices provide the perfect plat-
form to balance expressiveness of abstract domains with
their efficiency. Expressive logical lattices can be de-
signed that can infer complex linear and nonlinear arith-
metic invariants and even quantified invariants for arrays
and heaps [9]. Using such expressive logical domains re-
duces the number of false alarms generated by a static
analyzer. Logical lattices provide a uniform foundational
framework to explore new logical domains and the lim-
its and tradeoff between expressiveness and efficiency in
building abstract interpreters.

• The interoperability between the different static analysis
is achieved through assertions that are produced by each
tool. Each tool can use an assertion that has been com-
puted by another tool as an invariant that can aid its own
computation and analysis. A single tool or technique will
not be sufficient for achieving the levels of assurance de-
sired. Multiple approaches, as depicted in Figure 1, need
to be combined to work together to provide desired lev-
els of security or safety. In this context, theorem proving
technology will again be useful to achieve such an inte-
gration of different kinds of tools. A theorem proving en-
gine, such as PVS, can provide the backbone required to
carry out communication and transfer of results between
types of analyzers.

With the exception of testing and dynamic analysis, all
approaches in Figure 1 amount to computing an invariant of
a program. That is an assertion that is true in all runs of the
program. Each approach should be able to take advantage
of invariants computed using other approaches. Examples of
such combinations are deductive methods that use invariants
generated using static analysis. Another example is finite
abstractions computed using decision procedures such as the
case of predicate abstraction [7] used in C code verification
such as in the SLAM project [3]. In our application, we
illustrate how runtime execution of a program generates
interesting assertions about the program. Such assertions
while true only for the observed runs can be checked using
decision procedures in order to check if they hold for all
possible runs of a program. If so, such assertions become
invariants that can improve static analysis.

In other words, static analysis can greatly benefit from
the advances in theorem proving and decision procedures
to allow it to prove more complex properties and achieve
a better coverage of potential flaws that will allow better
assessment of the dependability of the target system. But
it can also greatly benefit from any other technology that
produces invariants that can then be consumed by the static
analysis tools to improve their analysis. We illustrate this
point in our binary static analysis by showing how static
and dynamic analysis combined with theorem proving work
better than any of these techniques alone.
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3. Binary Static Analysis
Understanding what an executable does is paramount to the
analysis of computer systems and networks in predicting ac-
curately their behavior, and to the discovery of critical vul-
nerabilities that have devastating effect on our global com-
puting infrastructure. Binary program analysis represents
needs and challenges that are unmet by current analysis
methods in general and static analysis in particular.

We are interested in two areas of research where binary
program analysis is critical. The first one is in reverse engi-
neering legitimate applications in order to predict their fu-
ture behavior. Any deviation from such predicted behavior
can be considered a malicious action that may trigger a di-
agnosis and a potential response. In such a case, binary pro-
gram analysis provides us with a host-based intrusion de-
tection capability with no false alarms that is applicable to
a wide variety of applications from network services, to of-
fice applications. Using binary static analysis to build reli-
able models of applications will close the gap created by
security tools that focus on publicly disclosed vulnerabili-
ties that represent according to recent statistics no more than
7% of the total number of vulnerabilities in our computers.
Binary static analysis does not only apply to the application
code but extends to libraries for which the source code is
unavailable. It has been shown that finding anomalies in the
stream of system calls issued by user applications is an ef-
fective host-based intrusion detection capability, and static
analysis is used to derive a model of application behavior re-
sulting in a host-based intrusion detection system with three
advantages: a high degree of automation, protection against a
broad class of attacks based on corrupted code, and the elim-
ination of false alarms. Therefore, static analysis produces a
model in the form of an approximation of the behavior of the
application. While this eliminates false alarms, since alarms
are raised only when the application deviates from its over-
approximation, it leads to a weakness of the model. That is,
the model might accept sequences of system calls that the
application would not allow. These sequences could poten-
tially compromise the application and the underlying oper-
ating system. The more precise the model is, the less such
attacks are possible. The precision of the model depends on
the complexity of the application’s code and the power of the
static analysis employed to build the model. We observe that
many types of attacks are preventable by making sure that
the application models used for intrusion detection capture
the semantics of the program in a simple and precise way.
We observe that attacks always inevitably violate an invari-
ant of the program, and that any approach to static-analysis-
based intrusion detection will be weakened by the absence
of such invariants from application models.

The second application of binary program analysis is mal-
ware detection and reverse engineering. Static binary anal-
ysis aims at reverse engineering the executable in order to
answer the following fundamental questions: what is the in-

tended behavior of the malware? how does it propagate it-
self? how does it protect itself from detection? is this a new
instance of an already known malware, or does this malware
contain logic that has never been observed before?. Current
techniques for malware analysis rely on the execution of the
malware and observing its behavior. However, a single or
multiple executions of a malware instance does not provide
a full picture of the potency of a malware and can only pro-
vide a partial image of its intended behavior due the multiple
layers of obfuscation present in today’s malware. Only static
analysis can reveal the full extend of the malware behavior
and its various triggers. Much of our malware analysis shares
the same static analysis infrastructure with building models
that represent the sequences of system calls and their argu-
ments for arbitrary applications. Therefore, invariants gener-
ated at any control location will improve the construction of
a more precise control flow graph of the program by taking
into account the flow of data and context sensitivity captured
using such invariants.

Source code analysis has seen significant advances in re-
cent years. However, little has been achieved in analyzing
binary programs. Most notable work in this area is the work
of Value Set Analysis (VSA) [2] where the values of regis-
ters and memory addresses is approximated by a set of pos-
sible values determined statically. Our analysis focuses on
invariant generation using a combination of static analysis,
theorem proving in the form of decision procedure and dy-
namic analysis. We are interested in three main invariants of
binary programs:

• linear invariants that represent constraints on function
and system calls arguments and their return values and
that determine the evaluation of jump conditions at any
point of the program.

• stack invariants that represents constraints on the values
of the stack at any point of the program

• heap invariants that represent constraints on the heap.

The three kinds of invariants can be expressed in the in-
put language of Yices [5] that supports the usual typesint,
real, andbool, user defined recursive datatypes and bitvec-
tors, as well as uninterpreted functions and dependent types.

4. Quasi-static Binary Analysis
We integrate static and dynamic analysis in a novel algo-
rithm that we call quasi-static analysis in which constraints
are generated dynamically from runs of the application as
well as by our invariant generation techniques. We have im-
plemented quasi-static analysis for C code in [11], and we
describe in what follows how it is implemented for binary
programs (Figure 2). There has been a wide body of litera-
ture that addresses the problem of invariant generation. What
is important to notice is that with the help of decision proce-
dures, it is much easier to prove that a given assertion is an
invariant of a program than to discover such assertion using
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invariant generation techniques. For dynamic analysis of ex-
ecution runs we use Daikon [6], a tool for generating likely
invariants. What dynamic analysis with tools such as Daikon
offers is an easy way of extracting assertions that are true for
a particular run of the application. With the help of Yices [5]
and similar decision procedures, we check if those assertions
hold for all runs. Our Quasi-static analysis process relieson
an initial phase of disassembly. We use IDA Pro [1] to gen-
erate from the executable and invoked DLLs, a control flow
graph (CFG) from which further analysis is conducted. IDA
pro is known to be the most effective disassembler tool.

.exe

.dll

IDA
Disassembler

CFG

Debugger

Daikon Yices

Database

Invariants

ASG

Figure 2. The Architecture of our Binary Analysis Tool-bus

4.1 Static Analysis

During the static analysis phase, we use the IDA Pro disas-
sembler to obtain the CFG of the application and its DLLs.
IDA Pro provide us with the a list of functions, memory lo-
cations containing constants such as strings, and the CFG
for each individual function. It also identifies library calls
and their arguments. The CFG is used by the static analyzer
to compute invariants at each control location and to sum-
marize individual functions in order to perform an interpro-
cedural analysis and to build a global CFG. We use Yices
to encode the semantics of instructions to define the logi-
cal lattice on which the analysis is performed. We also use
Yices as an assertion checking engine for the assertions that
are generated by dynamic analysis. An invariant database is
used to store all of the computed invariants which are used
to refine the global CFG. The global CFG can be viewed as
an abstract state graph (ASG) similar to the one constructed
by predicate abstraction [7]. Each newly generated invariant
represents a refinement of the global CFG. The definition
of the semantics of binary programs in Yices uses the usual
Yices supported datatypes. The following is the Yices defi-
nition of the 32 bitvector type representing integers:

(define-type int32 (bitvector 32))

We also define the stack type as a list as follows:

(define-type list

(datatype nil

(cons car::int32 cdr::list)))

The list is either empty (nil) or a list composed of a first
element (car) of type 32 bit integer and a tail of type list
(cdr). Consider the following simple example:

L1 : mov eax, 0

L2 : mov ebx, eax

L3 : inc eax

L4 :

Each instruction is interpreted by its semantics that de-
scribe how the state variables are affected by the instruction.
The registers, flags, and variables are all indexed by the num-
ber of the line of code where they appear:

• L2: eax 2 = 0

• L3: ebx 3 = eax 2 ∧ eax 3 = eax 2

• L4: eax 4 = eax 3 + 1 ∧ ebx 4 = ebx 3

On the other hand, each instruction generates an asser-
tion about the program that might be propagated to other
locations:

• L2: eax = 0

• L3: ebx = eax

• L4: eax = 1

4.2 Dynamic Analysis

Our Dynamic analysis consists of tracing the application’s
execution within the IDA Pro debugger in order to extract
runtime information. In particular, we are interested in regis-
ter values, stack, and heap values. IDA Pro allows us to trace
those values at any particular program point. Since invariant
generation techniques and static analysis techniques based
on abstract interpretation struggle with the difficult problem
of discovering loop invariant, we focus our dynamic analysis
on loops since our static analyzer can easily deal with loop-
free binary code. Dynamic analysis can often compute asser-
tions that static analysis can not compute. Figure 3 illustrates
this point. The figure describes the control flow of a function
Cntrl with two argumentsarg 0 andarg 4 of type inte-
ger. Both argumentsarg 0 andarg 4 are decremented until
arg 0 reaches the value0. At that point, if the variables are
equal then the function returns a 0, or a 1 otherwise.

We run the application in the IDA Pro debugger on few
inputs and we obtain the following traces showing the values
of arg 0 andarg 4 at various points of the program:

...

lea eax,[ebp+arg_4] ; Stack[]:arg_0: 00 00 00 00

...

mov eax,[ebp+arg_0] ; EAX=0

cmp eax,[ebp+arg_4] ; Stack[]:arg_0: 00 00 00 00

jnz short loc_4831B ; Stack[]:arg_4: 00 00 00 00

...

Imagine that this function is called with two valuesv1 and
v2 at the beginning of a large application and depending on
the result returned, a substantially different sub parts ofthe
application’s code is executed. All of the statical analysis
approaches to intrusion detection known in the literature
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Block 2 :
L1 : mov [ebp + var 4], 0
L2 : jmp short L 48322

Block 1 :
L1 : mov eax, [ebp + arg 0]
L2 : cmp eax, [ebp + arg 4]
L3 : jnz short L 4831B

L 4831B :
L1 : mov [ebp + var 4], 1

L 48322 :
L1 : mov eax, [ebp + var 4]
L2 : leave

L3 : retn

Cntrl :
L1 : push ebp

L2 : mov ebp, esp

L3 : sub esp, 4

L4 : jmp short L 48304

L 48304 :
L1 : cmp [ebp + arg 0], 0
L2 : jnz short L 482FC

L 482FC :
L1 : dec [ebp + arg 0]
L2 : lea eax, [ebp + arg 4]
L3 : dec dword ptr [eax]

Figure 3. Quasi-Static Analysis Example

will either ignore such a function because it does not refer
to system calls, and therefore allow both sub parts to be
executed, or will analyze such a function and will determine
that the only invariant that can be extracted and the exit
point of the function iseax = 1 or eax = 1 no matter
what arguments are passed to the function. Static analysis
techniques based on abstract interpretation will generatethe
same invariant. This is mainly due to the presence of a loop
who’s body is the block labeledL 482FC. While an abstract
interpreter will track the values of[ebp+arg 0], that is, the
value of the variable representing the first argument, and the
value of the memory location who’s address is in[eax], that
is, [ebp+arg 0], the value of the variable representing the
second argument, it will not converge and will generate the
following invariant at the end of the loop[ebp+arg 0] = 0

and [ebp+arg 4] = ⊥]. In other words, we know that at
the exit point of the loop,[ebp+arg 0] = 0 is true, which
is the condition of exiting the loop, but any information
about[ebp+arg 4] is lost. Using Daikon, we generate a
set of candidate invariants. In particular, Daikon generates
the following loop constraint indicating that the difference
between the two arguments is constant:

arg 0 482FC - arg 4 482FC = arg 0 - arg 4

It is easy to prove using Yices that such a candidate invariant
is indeed an invariant. Using this constraint, we are able to
summarize functionCntrl using the following predicates:

arg 0 = arg 4 implieseax = 0
arg 0 6= arg 4 implieseax = 1

4.3 Using Yices Interface as an Abstract Interpreter
and Assertion Checker

Our static analyzer is implemented using just three Yices
commands that represents a simple interface to a very pow-
erful decision procedure.

• (assert+ fml): this commands adds the formulafml
to the context. To each asserted formula, a unique id in
the form of a positive integer is associated.

• (check) : this commands checks whether the conjunc-
tion of the already asserted formulas is satisfiable. That
is, the conjunction does not contain a subset of inconsis-
tent formulas.

• (retract id) : This command removes a formula
with id id from the context.

When analyzing a block of instructions, we assert a for-
mula for each instruction in the block. The formula is the
semantics of the execution of the instructions.

4.4 Using Unsatisfiable Core to Propagate Invariants

When invoking thecheck command, Yices checks whether
the already asserted formulas are satisfiable or not. The re-
sult of Yices can besat indicating that the context is satisfi-
able and therefore the conjunction of the formulas in the con-
text is an invariant of the program at the current program lo-
cation. When the context is unsatisfiable, Yices returns with
unsat id1 id2 id3 ... idk indicating that the subset of for-
mulasid1 id2 id3 ... idk is inconsistent. Since the recently
added formula reflects the semantics of the execution at the
current control point, it remains in the context, and any for-
mula in the subset that causes the inconsistency has to be
removed.

5. Dealing With Obfuscation Techniques
Binary programs often exhibit various levels of obfuscation.
Sometimes these obfuscation are intended to defeat static
analysis. Some obfuscations can be the result of compiler
optimization that produces an efficient code that is hard to
analyze. In the following simple example, we show how our
static analysis tool-bus based on Yices allows us to easily
analyze certain classes of obfuscated programs. The exam-
ple (Figure 4) describes a small program where a function
Main calls the functionMax that computes the max of 2 and
4. The arguments 2 and 4 are pushed onto the stack as well
as the return addressL5, and the program jumps to the func-
tion Max. Figure 5 shows the same example where the same
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Main : Max :
L1 : push 4 L6 : mov eax, [esp+ 4]
L2 : push 2 L7 : mov ebx, [esp+ 8]
L3 : push offset L5 L8 : cmp eax, ebx

L4 : jmp Max L9 : jg L11

L5 : ret L10 : mov eax, ebx

L11 : ret 8

Figure 4. Function call obfuscation usingpush/jmp

Main : Max :
L1 : push 4 L7 : mov eax, [esp+ 4]
L2 : push 2 L8 : mov ebx, [esp+ 8]
L3 : push offset L6 L9 : cmp eax, ebx

L4 : push offset Max L10 : jg L12

L5 : ret L11 : mov eax, ebx

L6 : ret L12 : ret 8

Figure 5. Function call obfuscation usingpush/ret

functionality is achieved using thepush and ret instruc-
tions. Figure 6 shows the same example where the same
functionality is achieved using thepush and ret instruc-
tions. Translating the semantics of the three programs into

Main : Max :
L1 : push 4 L5 : mov eax, [esp + 4]
L2 : push 2 L6 : mov ebx, [esp + 8]
L3 : call Max L7 : cmp eax, ebx

L4 : ret L8 : jg L10

L9 : mov eax, ebx

L10 : pop ebx

L11 : add esp, 8

L12 : jmp ebx

Figure 6. Function call obfuscation usingpop to return

Yices, leads to equivalent states at the end of the executionof
the three programs. If we modify the third program (Figure
7) by making the call toMax dependent of the return value
of the functionCtrl (Figure 3), we can prove that function
Max will never be called.

Main : Max :
L1 : push 3 L5 : mov eax, [esp+ 4]
L2 : push 5 L6 : mov ebx, [esp+ 8]
L3 : call Cntrl L7 : cmp eax, ebx

L13 : test eax, eax L8 : jg L10

L14 : jnz L18 L9 : mov eax, ebx

L15 : push 4 L10 : pop ebx

L16 : push 2 L11 : add esp, 8

L17 : call Max L12 : jmp ebx

L18 : ret

Figure 7. Function call obfuscation usingpop to return

6. Conclusion
Different static analysis tools operate on different abstract
representation of a program. They are engines for generat-
ing different invariants of the same program. Abstract state
graphs computed by predicate abstraction can be viewed as
an intermediate structure that allows each tool to share its
results and to take advantage of the analysis performed by
other tools. In fact, the analysis of each tool can be viewed
as a refinement of the abstract state graph. We have shown
how dynamic analysis and decision procedures can be com-
bined with static analysis to build more precise models of
binary programs. We believe that a tool-bus architecture op-
erating on abstract state graphs is an efficient and general
approach to combining and extending static analysis tools in
order to prove more complex properties of software while
being scalable and computationally efficient. Furthermore,
the nondeterminism in the abstract state graph indicate what
part of the system requires more analysis.
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